Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Nov;70(11):7371–7378. doi: 10.1128/jvi.70.11.7371-7378.1996

Identification of amino acids controlling the low-pH-induced conformational change of rabies virus glycoprotein.

Y Gaudin 1, H Raux 1, A Flamand 1, R W Ruigrok 1
PMCID: PMC190804  PMID: 8892855

Abstract

The glycoprotein (G) of rabies virus assumes at least three different conformations: the native state detected at the viral surface above pH 7, the activated state involved in the first step of the fusion process, and the fusion-inactive conformation (I). A new category of monoclonal antibodies (MAbs) which recognized specifically the I conformation at the viral surface has recently been described. These MAbs (17A4 and 29EC2) became neutralizing when the virus was preincubated at acidic pH to induce the conformational change toward the I state of G. Mutants escaping neutralization were then selected. In this study, we have investigated the fusion and the low-pH-induced fusion inactivation properties of these mutants. All of these mutants have fusion properties similar to those of the CVS parental strain, but five mutants (E282K, M44I, M44V, V392G, and M396T) were considerably slowed in their conformational change leading to the I state. These mutants allow us to define regions that control this conformational change. These results also reinforce the idea that structural transition toward the I state is irrelevant to the fusion process. Other mutations in amino acids 10, 13, and 15 are probably located in the epitopes of selecting MAbs. Furthermore, in electron microscopy, we observed a hexagonal lattice of glycoproteins at the viral surface of mutants M44I and V392G as well as strong cooperativity in the conformational change toward the I state. This finding demonstrates the existence of lateral interactions between the spikes of a rhabdovirus.

Full Text

The Full Text of this article is available as a PDF (841.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benmansour A., Leblois H., Coulon P., Tuffereau C., Gaudin Y., Flamand A., Lafay F. Antigenicity of rabies virus glycoprotein. J Virol. 1991 Aug;65(8):4198–4203. doi: 10.1128/jvi.65.8.4198-4203.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brun G., Bao X., Prevec L. The relationship of Piry virus to other vesiculoviruses: a re-evaluation based on the glycoprotein gene sequence. Intervirology. 1995;38(5):274–282. doi: 10.1159/000150451. [DOI] [PubMed] [Google Scholar]
  3. Bundo-Morita K., Gibson S., Lenard J. Radiation inactivation analysis of fusion and hemolysis by vesicular stomatitis virus. Virology. 1988 Apr;163(2):622–624. doi: 10.1016/0042-6822(88)90304-2. [DOI] [PubMed] [Google Scholar]
  4. Chou P. Y., Fasman G. D. Beta-turns in proteins. J Mol Biol. 1977 Sep 15;115(2):135–175. doi: 10.1016/0022-2836(77)90094-8. [DOI] [PubMed] [Google Scholar]
  5. Chou P. Y., Fasman G. D. Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry. 1974 Jan 15;13(2):211–222. doi: 10.1021/bi00699a001. [DOI] [PubMed] [Google Scholar]
  6. Chou P. Y., Fasman G. D. Prediction of protein conformation. Biochemistry. 1974 Jan 15;13(2):222–245. doi: 10.1021/bi00699a002. [DOI] [PubMed] [Google Scholar]
  7. Clague M. J., Schoch C., Zech L., Blumenthal R. Gating kinetics of pH-activated membrane fusion of vesicular stomatitis virus with cells: stopped-flow measurements by dequenching of octadecylrhodamine fluorescence. Biochemistry. 1990 Feb 6;29(5):1303–1308. doi: 10.1021/bi00457a028. [DOI] [PubMed] [Google Scholar]
  8. Cox J. H., Dietzschold B., Schneider L. G. Rabies virus glycoprotein. II. Biological and serological characterization. Infect Immun. 1977 Jun;16(3):754–759. doi: 10.1128/iai.16.3.754-759.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Crimmins D. L., Mehard W. B., Schlesinger S. Physical properties of a soluble form of the glycoprotein of vesicular stomatitis virus at neutral and acidic pH. Biochemistry. 1983 Dec 6;22(25):5790–5796. doi: 10.1021/bi00294a017. [DOI] [PubMed] [Google Scholar]
  10. Daniels R. S., Downie J. C., Hay A. J., Knossow M., Skehel J. J., Wang M. L., Wiley D. C. Fusion mutants of the influenza virus hemagglutinin glycoprotein. Cell. 1985 Feb;40(2):431–439. doi: 10.1016/0092-8674(85)90157-6. [DOI] [PubMed] [Google Scholar]
  11. Doms R. W., Keller D. S., Helenius A., Balch W. E. Role for adenosine triphosphate in regulating the assembly and transport of vesicular stomatitis virus G protein trimers. J Cell Biol. 1987 Nov;105(5):1957–1969. doi: 10.1083/jcb.105.5.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Durrer P., Gaudin Y., Ruigrok R. W., Graf R., Brunner J. Photolabeling identifies a putative fusion domain in the envelope glycoprotein of rabies and vesicular stomatitis viruses. J Biol Chem. 1995 Jul 21;270(29):17575–17581. doi: 10.1074/jbc.270.29.17575. [DOI] [PubMed] [Google Scholar]
  13. Flamand A., Raux H., Gaudin Y., Ruigrok R. W. Mechanisms of rabies virus neutralization. Virology. 1993 May;194(1):302–313. doi: 10.1006/viro.1993.1261. [DOI] [PubMed] [Google Scholar]
  14. Fredericksen B. L., Whitt M. A. Mutations at two conserved acidic amino acids in the glycoprotein of vesicular stomatitis virus affect pH-dependent conformational changes and reduce the pH threshold for membrane fusion. Virology. 1996 Mar 1;217(1):49–57. doi: 10.1006/viro.1996.0092. [DOI] [PubMed] [Google Scholar]
  15. Gallione C. J., Rose J. K. Nucleotide sequence of a cDNA clone encoding the entire glycoprotein from the New Jersey serotype of vesicular stomatitis virus. J Virol. 1983 Apr;46(1):162–169. doi: 10.1128/jvi.46.1.162-169.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Garnier J., Osguthorpe D. J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol. 1978 Mar 25;120(1):97–120. doi: 10.1016/0022-2836(78)90297-8. [DOI] [PubMed] [Google Scholar]
  17. Gaudin Y., Ruigrok R. W., Brunner J. Low-pH induced conformational changes in viral fusion proteins: implications for the fusion mechanism. J Gen Virol. 1995 Jul;76(Pt 7):1541–1556. doi: 10.1099/0022-1317-76-7-1541. [DOI] [PubMed] [Google Scholar]
  18. Gaudin Y., Ruigrok R. W., Knossow M., Flamand A. Low-pH conformational changes of rabies virus glycoprotein and their role in membrane fusion. J Virol. 1993 Mar;67(3):1365–1372. doi: 10.1128/jvi.67.3.1365-1372.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gaudin Y., Ruigrok R. W., Tuffereau C., Knossow M., Flamand A. Rabies virus glycoprotein is a trimer. Virology. 1992 Apr;187(2):627–632. doi: 10.1016/0042-6822(92)90465-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gaudin Y., Tuffereau C., Durrer P., Flamand A., Ruigrok R. W. Biological function of the low-pH, fusion-inactive conformation of rabies virus glycoprotein (G): G is transported in a fusion-inactive state-like conformation. J Virol. 1995 Sep;69(9):5528–5534. doi: 10.1128/jvi.69.9.5528-5534.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gaudin Y., Tuffereau C., Segretain D., Knossow M., Flamand A. Reversible conformational changes and fusion activity of rabies virus glycoprotein. J Virol. 1991 Sep;65(9):4853–4859. doi: 10.1128/jvi.65.9.4853-4859.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Koener J. F., Passavant C. W., Kurath G., Leong J. Nucleotide sequence of a cDNA clone carrying the glycoprotein gene of infectious hematopoietic necrosis virus, a fish rhabdovirus. J Virol. 1987 May;61(5):1342–1349. doi: 10.1128/jvi.61.5.1342-1349.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Li Y., Drone C., Sat E., Ghosh H. P. Mutational analysis of the vesicular stomatitis virus glycoprotein G for membrane fusion domains. J Virol. 1993 Jul;67(7):4070–4077. doi: 10.1128/jvi.67.7.4070-4077.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Masters P. S., Bhella R. S., Butcher M., Patel B., Ghosh H. P., Banerjee A. K. Structure and expression of the glycoprotein gene of Chandipura virus. Virology. 1989 Jul;171(1):285–290. doi: 10.1016/0042-6822(89)90540-0. [DOI] [PubMed] [Google Scholar]
  25. Prehaud C., Coulon P., LaFay F., Thiers C., Flamand A. Antigenic site II of the rabies virus glycoprotein: structure and role in viral virulence. J Virol. 1988 Jan;62(1):1–7. doi: 10.1128/jvi.62.1.1-7.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Puri A., Grimaldi S., Blumenthal R. Role of viral envelope sialic acid in membrane fusion mediated by the vesicular stomatitis virus envelope glycoprotein. Biochemistry. 1992 Oct 20;31(41):10108–10113. doi: 10.1021/bi00156a034. [DOI] [PubMed] [Google Scholar]
  27. Raux H., Coulon P., Lafay F., Flamand A. Monoclonal antibodies which recognize the acidic configuration of the rabies glycoprotein at the surface of the virion can be neutralizing. Virology. 1995 Jul 10;210(2):400–408. doi: 10.1006/viro.1995.1356. [DOI] [PubMed] [Google Scholar]
  28. Rolls M. M., Webster P., Balba N. H., Rose J. K. Novel infectious particles generated by expression of the vesicular stomatitis virus glycoprotein from a self-replicating RNA. Cell. 1994 Nov 4;79(3):497–506. doi: 10.1016/0092-8674(94)90258-5. [DOI] [PubMed] [Google Scholar]
  29. Rose J. K., Gallione C. J. Nucleotide sequences of the mRNA's encoding the vesicular stomatitis virus G and M proteins determined from cDNA clones containing the complete coding regions. J Virol. 1981 Aug;39(2):519–528. doi: 10.1128/jvi.39.2.519-528.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Struck D. K., Hoekstra D., Pagano R. E. Use of resonance energy transfer to monitor membrane fusion. Biochemistry. 1981 Jul 7;20(14):4093–4099. doi: 10.1021/bi00517a023. [DOI] [PubMed] [Google Scholar]
  31. Teninges D., Bras-Herreng F. Rhabdovirus sigma, the hereditary CO2 sensitivity agent of Drosophila: nucleotide sequence of a cDNA clone encoding the glycoprotein. J Gen Virol. 1987 Oct;68(Pt 10):2625–2638. doi: 10.1099/0022-1317-68-10-2625. [DOI] [PubMed] [Google Scholar]
  32. Tordo N., Bourhy H., Sather S., Ollo R. Structure and expression in baculovirus of the Mokola virus glycoprotein: an efficient recombinant vaccine. Virology. 1993 May;194(1):59–69. doi: 10.1006/viro.1993.1235. [DOI] [PubMed] [Google Scholar]
  33. Whitt M. A., Buonocore L., Prehaud C., Rose J. K. Membrane fusion activity, oligomerization, and assembly of the rabies virus glycoprotein. Virology. 1991 Dec;185(2):681–688. doi: 10.1016/0042-6822(91)90539-n. [DOI] [PubMed] [Google Scholar]
  34. Wunner W. H., Reagan K. J., Koprowski H. Characterization of saturable binding sites for rabies virus. J Virol. 1984 Jun;50(3):691–697. doi: 10.1128/jvi.50.3.691-697.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yelverton E., Norton S., Obijeski J. F., Goeddel D. V. Rabies virus glycoprotein analogs: biosynthesis in Escherichia coli. Science. 1983 Feb 11;219(4585):614–620. doi: 10.1126/science.6297004. [DOI] [PubMed] [Google Scholar]
  36. Zhang L., Ghosh H. P. Characterization of the putative fusogenic domain in vesicular stomatitis virus glycoprotein G. J Virol. 1994 Apr;68(4):2186–2193. doi: 10.1128/jvi.68.4.2186-2193.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES