Abstract
1. This study was carried out in order to identify the receptor responsible for adenosine-induced dilatation of the hepatic arterial vascular bed. 2. Livers of 10 New Zealand White rabbits were perfused in vitro with Krebs-Bülbring buffer via the hepatic artery and the portal vein at constant flows of 26 and 77 ml min-1 100 g-1 liver respectively. The tone of the preparation was raised by the presence of noradrenaline in the perfusate (concentration: 10(-5) M). 3. Dose-response curves for adenosine and its analogues 5'-N-ethyl-carboxamido-adenosine (NECA), the 2-substituted NECA analogue CGS 21680C, and R- and S-N6-phenyl-isopropyl-adenosine (R- and S-PIA) were obtained after their injection into the hepatic arterial supply. 4. The order of vasodilator potency of these agents was: NECA greater than CGS 21680C greater than adenosine greater than R-PIA greater than S-PIA. Their potency, expressed relative to that of adenosine, was in the approximate ratio 10:3:1:0.3:0.1, consistent with that resulting from activation of P1-purinoceptors of the A2 sub-type (which mediate vasodilatation due to adenosine). 5. The P1-purinoceptor antagonist 8-phenyltheophylline (10(-5) M) caused significant attenuation of the vasodilatation to adenosine and analogues. 6. It is concluded that adenosine-induced dilatation of the hepatic arterial vascular bed is mediated by P1-purinoceptors of the A2 sub-type.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balwierczak J. L., Krulan C. M., Wang Z. C., Chen J., Jeng A. Y. Effects of adenosine A2 receptor agonists on nucleoside transport. J Pharmacol Exp Ther. 1989 Oct;251(1):279–287. [PubMed] [Google Scholar]
- Bardenheuer H., Schrader J. Supply-to-demand ratio for oxygen determines formation of adenosine by the heart. Am J Physiol. 1986 Feb;250(2 Pt 2):H173–H180. doi: 10.1152/ajpheart.1986.250.2.H173. [DOI] [PubMed] [Google Scholar]
- Berne R. M., Knabb R. M., Ely S. W., Rubio R. Adenosine in the local regulation of blood flow: a brief overview. Fed Proc. 1983 Dec;42(15):3136–3142. [PubMed] [Google Scholar]
- Brizzolara A. L., Burnstock G. Endothelium-dependent and endothelium-independent vasodilatation of the hepatic artery of the rabbit. Br J Pharmacol. 1991 May;103(1):1206–1212. doi: 10.1111/j.1476-5381.1991.tb12325.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brizzolara A. L., Burnstock G. Evidence for noradrenergic-purinergic cotransmission in the hepatic artery of the rabbit. Br J Pharmacol. 1990 Apr;99(4):835–839. doi: 10.1111/j.1476-5381.1990.tb13016.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bruns R. F., Lu G. H., Pugsley T. A. Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol. 1986 Apr;29(4):331–346. [PubMed] [Google Scholar]
- Buxton D. B., Fisher R. A., Robertson S. M., Olson M. S. Stimulation of glycogenolysis and vasoconstriction by adenosine and adenosine analogues in the perfused rat liver. Biochem J. 1987 Nov 15;248(1):35–41. doi: 10.1042/bj2480035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collis M. G. The vasodilator role of adenosine. Pharmacol Ther. 1989;41(1-2):143–162. doi: 10.1016/0163-7258(89)90104-6. [DOI] [PubMed] [Google Scholar]
- Daly J. W., Padgett W., Thompson R. D., Kusachi S., Bugni W. J., Olsson R. A. Structure-activity relationships for N6-substituted adenosines at a brain A1-adenosine receptor with a comparison to an A2-adenosine receptor regulating coronary blood flow. Biochem Pharmacol. 1986 Aug 1;35(15):2467–2481. doi: 10.1016/0006-2952(86)90042-0. [DOI] [PubMed] [Google Scholar]
- Edvinsson L., Fredholm B. B. Characterization of adenosine receptors in isolated cerebral arteries of cat. Br J Pharmacol. 1983 Dec;80(4):631–637. doi: 10.1111/j.1476-5381.1983.tb10052.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghai G., Francis J. E., Williams M., Dotson R. A., Hopkins M. F., Cote D. T., Goodman F. R., Zimmerman M. B. Pharmacological characterization of CGS 15943A: a novel nonxanthine adenosine antagonist. J Pharmacol Exp Ther. 1987 Sep;242(3):784–790. [PubMed] [Google Scholar]
- Hamilton H. W., Taylor M. D., Steffen R. P., Haleen S. J., Bruns R. F. Correlation of adenosine receptor affinities and cardiovascular activity. Life Sci. 1987 Nov 16;41(20):2295–2302. doi: 10.1016/0024-3205(87)90542-x. [DOI] [PubMed] [Google Scholar]
- Hutchison A. J., Webb R. L., Oei H. H., Ghai G. R., Zimmerman M. B., Williams M. CGS 21680C, an A2 selective adenosine receptor agonist with preferential hypotensive activity. J Pharmacol Exp Ther. 1989 Oct;251(1):47–55. [PubMed] [Google Scholar]
- Kennedy C., Burnstock G. Evidence for an inhibitory prejunctional P1-purinoceptor in the rat portal vein with characteristics of the A2 rather than of the A1 subtype. Eur J Pharmacol. 1984 May 4;100(3-4):363–368. doi: 10.1016/0014-2999(84)90014-1. [DOI] [PubMed] [Google Scholar]
- Kusachi S., Thompson R. D., Olsson R. A. Ligand selectivity of dog coronary adenosine receptor resembles that of adenylate cyclase stimulatory (Ra) receptors. J Pharmacol Exp Ther. 1983 Nov;227(2):316–321. [PubMed] [Google Scholar]
- Kusachi S., Thompson R. D., Yamada N., Daly D. T., Olsson R. A. Dog coronary artery adenosine receptor: structure of the N6-aryl subregion. J Med Chem. 1986 Jun;29(6):989–996. doi: 10.1021/jm00156a016. [DOI] [PubMed] [Google Scholar]
- Lautt W. W., Legare D. J. The use of 8-phenyltheophylline as a competitive antagonist of adenosine and an inhibitor of the intrinsic regulatory mechanism of the hepatic artery. Can J Physiol Pharmacol. 1985 Jun;63(6):717–722. doi: 10.1139/y85-117. [DOI] [PubMed] [Google Scholar]
- Lautt W. W., Legare D. J., d'Almeida M. S. Adenosine as putative regulator of hepatic arterial flow (the buffer response). Am J Physiol. 1985 Mar;248(3 Pt 2):H331–H338. doi: 10.1152/ajpheart.1985.248.3.H331. [DOI] [PubMed] [Google Scholar]
- Lautt W. W. Mechanism and role of intrinsic regulation of hepatic arterial blood flow: hepatic arterial buffer response. Am J Physiol. 1985 Nov;249(5 Pt 1):G549–G556. doi: 10.1152/ajpgi.1985.249.5.G549. [DOI] [PubMed] [Google Scholar]
- Mathie R. T., Alexander B. The role of adenosine in the hyperaemic response of the hepatic artery to portal vein occlusion (the 'buffer response'). Br J Pharmacol. 1990 Jul;100(3):626–630. doi: 10.1111/j.1476-5381.1990.tb15857.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mustafa S. J., Askar A. O. Evidence suggesting an Ra-type adenosine receptor in bovine coronary arteries. J Pharmacol Exp Ther. 1985 Jan;232(1):49–56. [PubMed] [Google Scholar]
- Oei H. H., Ghai G. R., Zoganas H. C., Stone G. A., Zimmerman M. B., Field F. P., Williams M. Correlation between binding affinities for brain A1 and A2 receptors of adenosine agonists and antagonists and their effects on heart rate and coronary vascular tone. J Pharmacol Exp Ther. 1988 Dec;247(3):882–888. [PubMed] [Google Scholar]
- Schütz W., Tuisl E., Kraupp O. Adenosine receptor agonists: binding and adenylate cyclase stimulation in rat liver plasma membranes. Naunyn Schmiedebergs Arch Pharmacol. 1982 Apr;319(1):34–39. doi: 10.1007/BF00491475. [DOI] [PubMed] [Google Scholar]
- Williams M. Purine receptors in mammalian tissues: pharmacology and functional significance. Annu Rev Pharmacol Toxicol. 1987;27:315–345. doi: 10.1146/annurev.pa.27.040187.001531. [DOI] [PubMed] [Google Scholar]