Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 May;103(1):1108–1113. doi: 10.1111/j.1476-5381.1991.tb12308.x

Characterization of P2X- and P2Y-purinoceptors in the rabbit hepatic arterial vasculature.

V Ralevic 1, R T Mathie 1, B Alexander 1, G Burnstock 1
PMCID: PMC1908087  PMID: 1878749

Abstract

1. Responses to adenosine 5'-triphosphate (ATP) and its agonists were studied in the isolated liver of the rabbit dually perfused through the hepatic artery and the portal vein. 2. In the hepatic arterial vascular bed at basal tone, ATP and its agonists elicited vasoconstrictor responses with the rank order of potency alpha,beta-methylene ATP greater than 2-methylthio ATP greater than ATP, consistent with their action at the P2X-purinoceptor. 3. When tone was raised with noradrenaline (10(-5) M), vasodilator responses were produced with ATP and 2-methylthio ATP; alpha,beta-methylene ATP produced only further constriction. The rank order of vasodilator potency was 2-methylthio ATP greater than ATP much greater than alpha,beta-methylene ATP, consistent with their action at the P2Y-purinoceptor. 4. Methylene blue (10(-5) M) antagonized vasodilator responses to acetylcholine and ATP, but not those to adenosine or sodium nitroprusside. Addition of 8-phenyltheophylline (10(-5) M) antagonized responses to adenosine but not those to sodium nitroprusside. Responses to ATP remaining after antagonism with methylene blue were not further antagonized by 8-phenyltheophylline. 5. These results present evidence for discrete P2X- and P2Y-purinoceptors in the rabbit hepatic arterial bed which mediate vasoconstrictor and vasodilator responses respectively. 6. Vasodilatation produced by ATP was entirely due to direct action at the P2Y-purinoceptor, and not at a P1-purinoceptor following breakdown to adenosine. The antagonism of these responses by methylene blue is consistent with the view that vasodilatation by ATP takes place largely via endothelial P2Y-purinoceptors that lead to release of endothelium-derived relaxing factor.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1108

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brizzolara A. L., Burnstock G. Evidence for noradrenergic-purinergic cotransmission in the hepatic artery of the rabbit. Br J Pharmacol. 1990 Apr;99(4):835–839. doi: 10.1111/j.1476-5381.1990.tb13016.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burnstock G., Kennedy C. Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol. 1985;16(5):433–440. doi: 10.1016/0306-3623(85)90001-1. [DOI] [PubMed] [Google Scholar]
  3. Burnstock G. Local control of blood pressure by purines. Blood Vessels. 1987;24(3):156–160. doi: 10.1159/000158691. [DOI] [PubMed] [Google Scholar]
  4. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  5. Gordon J. L. Extracellular ATP: effects, sources and fate. Biochem J. 1986 Jan 15;233(2):309–319. doi: 10.1042/bj2330309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Houston D. A., Burnstock G., Vanhoutte P. M. Different P2-purinergic receptor subtypes of endothelium and smooth muscle in canine blood vessels. J Pharmacol Exp Ther. 1987 May;241(2):501–506. [PubMed] [Google Scholar]
  7. Kennedy C., Burnstock G. Evidence for two types of P2-purinoceptor in longitudinal muscle of the rabbit portal vein. Eur J Pharmacol. 1985 Apr 23;111(1):49–56. doi: 10.1016/0014-2999(85)90112-8. [DOI] [PubMed] [Google Scholar]
  8. Kennedy C., Delbro D., Burnstock G. P2-purinoceptors mediate both vasodilation (via the endothelium) and vasoconstriction of the isolated rat femoral artery. Eur J Pharmacol. 1985 Jan 2;107(2):161–168. doi: 10.1016/0014-2999(85)90055-x. [DOI] [PubMed] [Google Scholar]
  9. Keppens S., Vandekerckhove A., De Wulf H. Characterization of the purinoceptors present in rabbit and guinea pig liver. Eur J Pharmacol. 1990 Jun 21;182(1):149–153. doi: 10.1016/0014-2999(90)90504-y. [DOI] [PubMed] [Google Scholar]
  10. Lautt W. W., Greenway C. V. Conceptual review of the hepatic vascular bed. Hepatology. 1987 Sep-Oct;7(5):952–963. doi: 10.1002/hep.1840070527. [DOI] [PubMed] [Google Scholar]
  11. Lautt W. W., Legare D. J. The use of 8-phenyltheophylline as a competitive antagonist of adenosine and an inhibitor of the intrinsic regulatory mechanism of the hepatic artery. Can J Physiol Pharmacol. 1985 Jun;63(6):717–722. doi: 10.1139/y85-117. [DOI] [PubMed] [Google Scholar]
  12. Lautt W. W., Legare D. J., d'Almeida M. S. Adenosine as putative regulator of hepatic arterial flow (the buffer response). Am J Physiol. 1985 Mar;248(3 Pt 2):H331–H338. doi: 10.1152/ajpheart.1985.248.3.H331. [DOI] [PubMed] [Google Scholar]
  13. Lautt W. W. Mechanism and role of intrinsic regulation of hepatic arterial blood flow: hepatic arterial buffer response. Am J Physiol. 1985 Nov;249(5 Pt 1):G549–G556. doi: 10.1152/ajpgi.1985.249.5.G549. [DOI] [PubMed] [Google Scholar]
  14. Lee J. W., Filkins J. P. Exogenous ATP and hepatic hemodynamics in the perfused rat liver. Circ Shock. 1988 Feb;24(2):99–110. [PubMed] [Google Scholar]
  15. Martin W., Villani G. M., Jothianandan D., Furchgott R. F. Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J Pharmacol Exp Ther. 1985 Mar;232(3):708–716. [PubMed] [Google Scholar]
  16. Mathie R. T., Alexander B. The role of adenosine in the hyperaemic response of the hepatic artery to portal vein occlusion (the 'buffer response'). Br J Pharmacol. 1990 Jul;100(3):626–630. doi: 10.1111/j.1476-5381.1990.tb15857.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mathie R. T., Blumgart L. H. The hepatic haemodynamic response to acute portal venous blood flow reductions in the dog. Pflugers Arch. 1983 Nov;399(3):223–227. doi: 10.1007/BF00656719. [DOI] [PubMed] [Google Scholar]
  18. Mathieson J. J., Burnstock G. Purine-mediated relaxation and constriction of isolated rabbit mesenteric artery are not endothelium-dependent. Eur J Pharmacol. 1985 Dec 3;118(3):221–229. doi: 10.1016/0014-2999(85)90132-3. [DOI] [PubMed] [Google Scholar]
  19. Moore P. K., al-Swayeh O. A., Chong N. W., Evans R. A., Gibson A. L-NG-nitro arginine (L-NOARG), a novel, L-arginine-reversible inhibitor of endothelium-dependent vasodilatation in vitro. Br J Pharmacol. 1990 Feb;99(2):408–412. doi: 10.1111/j.1476-5381.1990.tb14717.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
  21. Pearson J. D., Gordon J. L. Nucleotide metabolism by endothelium. Annu Rev Physiol. 1985;47:617–627. doi: 10.1146/annurev.ph.47.030185.003153. [DOI] [PubMed] [Google Scholar]
  22. Ralevic V., Burnstock G. Actions mediated by P2-purinoceptor subtypes in the isolated perfused mesenteric bed of the rat. Br J Pharmacol. 1988 Oct;95(2):637–645. doi: 10.1111/j.1476-5381.1988.tb11686.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rees D. D., Palmer R. M., Hodson H. F., Moncada S. A specific inhibitor of nitric oxide formation from L-arginine attenuates endothelium-dependent relaxation. Br J Pharmacol. 1989 Feb;96(2):418–424. doi: 10.1111/j.1476-5381.1989.tb11833.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Richardson P. D. Physiological regulation of the hepatic circulation. Fed Proc. 1982 Apr;41(6):2111–2116. [PubMed] [Google Scholar]
  25. Watanabe M., Rosenblum W. I., Nelson G. H. In vivo effect of methylene blue on endothelium-dependent and endothelium-independent dilations of brain microvessels in mice. Circ Res. 1988 Jan;62(1):86–90. doi: 10.1161/01.res.62.1.86. [DOI] [PubMed] [Google Scholar]
  26. Wolin M. S., Cherry P. D., Rodenburg J. M., Messina E. J., Kaley G. Methylene blue inhibits vasodilation of skeletal muscle arterioles to acetylcholine and nitric oxide via the extracellular generation of superoxide anion. J Pharmacol Exp Ther. 1990 Sep;254(3):872–876. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES