Abstract
1 The actions of the potassium channel openers, cromakalim and minoxidil sulphate, were compared in a range of isolated blood vessel preparations. 2 Cromakalim and minoxidil sulphate inhibited spontaneous mechanical activity of the guinea-pig portal vein and relaxed the noradrenaline precontracted rat aorta with similar potency. In contrast, minoxidil sulphate was less potent than cromakalim in inhibiting spontaneous activity in the rat portal vein and was essentially inactive in the noradrenaline precontracted rat mesenteric artery and rabbit aorta. 3 Minoxidil sulphate did not antagonize the effects of cromakalim in the rabbit aorta indicating it was not acting as a partial 'agonist'. 4 Charybdotoxin, noxiustoxin and rubidium failed to discriminate between cromakalim and minoxidil sulphate indicating that the apparently selective effects of minoxidil sulphate were not mediated by either Ca(2+)-activated potassium channels, delayed rectifiers or rubidium impermeable potassium channels. 5 Glibenclamide antagonized the effects of cromakalim in an apparently competitive manner whereas the effects of minoxidil sulphate were antagonized in a non-competitive manner. The involvement of subtypes of ATP-sensitive potassium channels is discussed.
Full text
PDF![1148](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab7f/1908107/52291e9f57a2/brjpharm00235-0146.png)
![1149](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab7f/1908107/a44008ab4f2f/brjpharm00235-0147.png)
![1150](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab7f/1908107/a5fd6248275d/brjpharm00235-0148.png)
![1151](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab7f/1908107/c23631b424b1/brjpharm00235-0149.png)
![1152](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab7f/1908107/6b162a672648/brjpharm00235-0150.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beech D. J., Bolton T. B. Properties of the cromakalim-induced potassium conductance in smooth muscle cells isolated from the rabbit portal vein. Br J Pharmacol. 1989 Nov;98(3):851–864. doi: 10.1111/j.1476-5381.1989.tb14614.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buckingham R. E., Hamilton T. C., Howlett D. R., Mootoo S., Wilson C. Inhibition by glibenclamide of the vasorelaxant action of cromakalim in the rat. Br J Pharmacol. 1989 May;97(1):57–64. doi: 10.1111/j.1476-5381.1989.tb11923.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carbone E., Wanke E., Prestipino G., Possani L. D., Maelicke A. Selective blockage of voltage-dependent K+ channels by a novel scorpion toxin. Nature. 1982 Mar 4;296(5852):90–91. doi: 10.1038/296090a0. [DOI] [PubMed] [Google Scholar]
- Foster C. D., Fujii K., Kingdon J., Brading A. F. The effect of cromakalim on the smooth muscle of the guinea-pig urinary bladder. Br J Pharmacol. 1989 May;97(1):281–291. doi: 10.1111/j.1476-5381.1989.tb11952.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gelband C. H., Lodge N. J., Van Breemen C. A Ca2+-activated K+ channel from rabbit aorta: modulation by cromakalim. Eur J Pharmacol. 1989 Aug 22;167(2):201–210. doi: 10.1016/0014-2999(89)90580-3. [DOI] [PubMed] [Google Scholar]
- Hamilton T. C., Weir S. W., Weston A. H. Comparison of the effects of BRL 34915 and verapamil on electrical and mechanical activity in rat portal vein. Br J Pharmacol. 1986 May;88(1):103–111. doi: 10.1111/j.1476-5381.1986.tb09476.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kauffman R. F., Schenck K. W., Conery B. G., Cohen M. L. Effects of pinacidil on serotonin-induced contractions and cyclic nucleotide levels in isolated rat aortae: comparison with nitroglycerin, minoxidil, and hydralazine. J Cardiovasc Pharmacol. 1986 Nov-Dec;8(6):1195–1200. doi: 10.1097/00005344-198611000-00015. [DOI] [PubMed] [Google Scholar]
- Leblanc N., Wilde D. W., Keef K. D., Hume J. R. Electrophysiological mechanisms of minoxidil sulfate-induced vasodilation of rabbit portal vein. Circ Res. 1989 Oct;65(4):1102–1111. doi: 10.1161/01.res.65.4.1102. [DOI] [PubMed] [Google Scholar]
- Meisheri K. D., Cipkus L. A., Taylor C. J. Mechanism of action of minoxidil sulfate-induced vasodilation: a role for increased K+ permeability. J Pharmacol Exp Ther. 1988 Jun;245(3):751–760. [PubMed] [Google Scholar]
- Newgreen D. T., Bray K. M., McHarg A. D., Weston A. H., Duty S., Brown B. S., Kay P. B., Edwards G., Longmore J., Southerton J. S. The action of diazoxide and minoxidil sulphate on rat blood vessels: a comparison with cromakalim. Br J Pharmacol. 1990 Jul;100(3):605–613. doi: 10.1111/j.1476-5381.1990.tb15854.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noguchi A., Takamura M., Yamada K., Tou S., Kawamura M. Procaine inhibits cyclic AMP-induced steroidogenesis in isolated bovine adrenocortical cells. Jpn J Pharmacol. 1990 Jan;52(1):81–85. doi: 10.1254/jjp.52.81. [DOI] [PubMed] [Google Scholar]
- Piper I., Hollingsworth M. Cromakalim, RP49356, pinacidil and minoxidil sulphate in the rat uterus and their antagonism by glibenclamide. Smooth Muscle Research Group. Br J Pharmacol. 1989 Dec;98 (Suppl):807P–807P. [PubMed] [Google Scholar]
- Quast U., Cook N. S. Moving together: K+ channel openers and ATP-sensitive K+ channels. Trends Pharmacol Sci. 1989 Nov;10(11):431–435. doi: 10.1016/S0165-6147(89)80003-3. [DOI] [PubMed] [Google Scholar]
- Standen N. B., Quayle J. M., Davies N. W., Brayden J. E., Huang Y., Nelson M. T. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science. 1989 Jul 14;245(4914):177–180. doi: 10.1126/science.2501869. [DOI] [PubMed] [Google Scholar]
- Towart R. Effects of nitrendipine (BAY e 5009), nifedipine, verapamil, phentolamine, papaverine, and minoxidil on contractions of isolated rabbit aortic smooth muscle. J Cardiovasc Pharmacol. 1982 Nov-Dec;4(6):895–902. [PubMed] [Google Scholar]
- Winquist R. J., Heaney L. A., Wallace A. A., Baskin E. P., Stein R. B., Garcia M. L., Kaczorowski G. J. Glyburide blocks the relaxation response to BRL 34915 (cromakalim), minoxidil sulfate and diazoxide in vascular smooth muscle. J Pharmacol Exp Ther. 1989 Jan;248(1):149–156. [PubMed] [Google Scholar]