Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 May;103(1):1041–1046. doi: 10.1111/j.1476-5381.1991.tb12297.x

Putative neurotrophic factors and functional recovery from peripheral nerve damage in the rat.

C E Van der Zee 1, J H Brakkee 1, W H Gispen 1
PMCID: PMC1908108  PMID: 1678980

Abstract

1. In rats, recovery of sensory-motor function following a crush lesion of the sciatic or tibial nerve was monitored by measuring foot reflex withdrawal from a local noxious stimulation of the foot sole. 2. Putative neurotrophic compounds were tested on this functional recovery model: melanocortins (peptides derived from ACTH (corticotropin) and alpha-MSH (melanotropin], gangliosides and nimodipine were effective whereas isaxonine and TRH (thyrotropin releasing hormone) were not. 3. Structure-activity studies with melanocortins revealed a similar effectiveness of alpha-MSH, [N-Leu4, D-Phe7]-alpha-MSH, desacetyl-alpha-MSH and the ACTH analogue ORG 2766, questioning the validity of the previously suggested notion that the melanotrophic properties of these peptides are responsible for their neurotrophic effect. 4. As recovery of function after peripheral nerve damage follows a similar time course in hypophysectomized (five days post operation) and sham-operated rats, effective melanocortin therapy does not mimic an endogenous peptide signal in the repair process from pituitary origin. 5. Subcutaneous treatment with ORG 2766 (7.5 micrograms kg-1 48 h-1) facilitates recovery of function following peripheral nerve damage in young (6-7 weeks old), mature (5 month old) and old (20 month old) rats. 6. In view of the diversity in structure of the effective neurotrophic factors and the complexity of nerve repair, the present data support the notion that peripheral nerve repair may be facilitated by different humoral factors likely to be active on different aspects of the recovery process.

Full text

PDF
1041

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bijlsma W. A., Schotman P., Jennekens F. G., Gispen W. H., De Wied D. The enhanced recovery of sensorimotor function in rats is related to the melanotropic moiety of ACTH/MSH neuropeptides. Eur J Pharmacol. 1983 Sep 2;92(3-4):231–236. doi: 10.1016/0014-2999(83)90291-1. [DOI] [PubMed] [Google Scholar]
  2. Black M. M., Lasek R. J. Slowing of the rate of axonal regeneration during growth and maturation. Exp Neurol. 1979 Jan;63(1):108–119. doi: 10.1016/0014-4886(79)90188-2. [DOI] [PubMed] [Google Scholar]
  3. De Koning P., Brakkee J. H., Gispen W. H. Methods for producing a reproducible crush in the sciatic and tibial nerve of the rat and rapid and precise testing of return of sensory function. Beneficial effects of melanocortins. J Neurol Sci. 1986 Jul;74(2-3):237–246. doi: 10.1016/0022-510x(86)90109-7. [DOI] [PubMed] [Google Scholar]
  4. De Wied D., Jolles J. Neuropeptides derived from pro-opiocortin: behavioral, physiological, and neurochemical effects. Physiol Rev. 1982 Jul;62(3):976–1059. doi: 10.1152/physrev.1982.62.3.976. [DOI] [PubMed] [Google Scholar]
  5. Dekker A. J. Effect of alpha-melanocyte-stimulating hormone on peripheral nerve regeneration in the rat: histological aspects and comparison with the effect of gangliosides. Exp Neurol. 1988 Feb;99(2):490–497. doi: 10.1016/0014-4886(88)90165-3. [DOI] [PubMed] [Google Scholar]
  6. Dekker A. J., Princen M. M., De Nijs H., De Leede L. G., Broekkamp C. L. Acceleration of recovery from sciatic nerve damage by the ACTH (4-9) analog Org 2766: different routes of administration. Peptides. 1987 Nov-Dec;8(6):1057–1059. doi: 10.1016/0196-9781(87)90136-7. [DOI] [PubMed] [Google Scholar]
  7. Dekker A., Gispen W. H., de Wied D. Axonal regeneration, growth factors and neuropeptides. Life Sci. 1987 Oct 5;41(14):1667–1678. doi: 10.1016/0024-3205(87)90593-5. [DOI] [PubMed] [Google Scholar]
  8. Dunn A. J., Schotman P. Effects of ACTH and related peptides on cerebral RNA and protein synthesis. Pharmacol Ther. 1981;12(2):353–372. doi: 10.1016/0163-7258(81)90086-3. [DOI] [PubMed] [Google Scholar]
  9. Eberle A., Schwyzer R. Hormone-receptor interactions. Demonstration of two message sequences (active sites) in alpha-melanotropin. Helv Chim Acta. 1975 Sep 24;58(6):1528–1535. doi: 10.1002/hlca.19750580604. [DOI] [PubMed] [Google Scholar]
  10. Edwards P. M., Van der Zee C. E., Verhaagen J., Schotman P., Jennekens F. G., Gispen W. H. Evidence that the neurotrophic actions of alpha-MSH may derive from its ability to mimick the actions of a peptide formed in degenerating nerve stumps. J Neurol Sci. 1984 Jun;64(3):333–340. doi: 10.1016/0022-510x(84)90181-3. [DOI] [PubMed] [Google Scholar]
  11. Faden A. I., Jacobs T. P. Effect of TRH analogs on neurologic recovery after experimental spinal trauma. Neurology. 1985 Sep;35(9):1331–1334. doi: 10.1212/wnl.35.9.1331. [DOI] [PubMed] [Google Scholar]
  12. Frischer R. E., Strand F. L. ACTH peptides stimulate motor nerve sprouting in development. Exp Neurol. 1988 Jun;100(3):531–541. doi: 10.1016/0014-4886(88)90037-4. [DOI] [PubMed] [Google Scholar]
  13. Gispen W. H., Wiegant V. M., Greven H. M., de Wied D. The induction of excessive grooming in the rat by intraventricular application of peptides derived from ACTH: structure-activity studies. Life Sci. 1975 Aug 15;17(4):645–652. doi: 10.1016/0024-3205(75)90103-4. [DOI] [PubMed] [Google Scholar]
  14. Gispen W. H., de Wied D., Schotman P., Jansz H. S. Effects of hypophysectomy on RNA metabolism in rat brain stem. J Neurochem. 1970 Jun;17(6):751–761. doi: 10.1111/j.1471-4159.1970.tb03345.x. [DOI] [PubMed] [Google Scholar]
  15. Gonzalez E. R., Strand F. L. Neurotropic action of MSH/ACTH 4-10 on neuromuscular function in hypophysectomized rats. Peptides. 1981;2 (Suppl 1):107–113. doi: 10.1016/0196-9781(81)90064-4. [DOI] [PubMed] [Google Scholar]
  16. Gorio A., Marini P., Zanoni R. Muscle reinnervation--III. Motoneuron sprouting capacity, enhancement by exogenous gangliosides. Neuroscience. 1983 Mar;8(3):417–429. doi: 10.1016/0306-4522(83)90189-6. [DOI] [PubMed] [Google Scholar]
  17. Greven H. M., de Wied D. The influence of peptides derived from corticotrophin (ACTH) on performance. Structure activity studies. Prog Brain Res. 1973;39:429–442. doi: 10.1016/S0079-6123(08)64098-4. [DOI] [PubMed] [Google Scholar]
  18. Hugelin A., Legrain Y., Bondoux-Jahan M. Nerve-growth promoting action of isaxonine in rat. Experientia. 1979 May 15;35(5):626–627. doi: 10.1007/BF01960361. [DOI] [PubMed] [Google Scholar]
  19. Hugelin A., Tarrade T., Istin M., Coelho R. Accélération de la vitesse de croissance du neruone par une nouvelle substance neurotrope: le N-isopropyl-amino-2-pyrimidine. C R Acad Sci Hebd Seances Acad Sci D. 1977 Nov 28;285(15):1339–1341. [PubMed] [Google Scholar]
  20. Jennekens F. G. Vitamine B is geen wondermiddel. Ned Tijdschr Geneeskd. 1984 Jun 30;128(26):1241–1242. [PubMed] [Google Scholar]
  21. Kanje M., Skottner A., Lundborg G. Effects of growth hormone treatment on the regeneration of rat sciatic nerve. Brain Res. 1988 Dec 20;475(2):254–258. doi: 10.1016/0006-8993(88)90613-0. [DOI] [PubMed] [Google Scholar]
  22. Kater S. B., Mattson M. P., Cohan C., Connor J. Calcium regulation of the neuronal growth cone. Trends Neurosci. 1988 Jul;11(7):315–321. doi: 10.1016/0166-2236(88)90094-x. [DOI] [PubMed] [Google Scholar]
  23. Le Quesne P. M., Fowler C. J., Harding A. E. A study of the effects of isaxonine on vincristine-induced peripheral neuropathy in man and regeneration following peripheral nerve crush in the rat. J Neurol Neurosurg Psychiatry. 1985 Sep;48(9):933–935. doi: 10.1136/jnnp.48.9.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ledeen R. W. Biology of gangliosides: neuritogenic and neuronotrophic properties. J Neurosci Res. 1984;12(2-3):147–159. doi: 10.1002/jnr.490120204. [DOI] [PubMed] [Google Scholar]
  25. Legrain Y. Méthode de comparaison de la vitesse de regénération des fibres du nerf sciatique du rat. J Physiol (Paris) 1977 Jun;73(1):13–22. [PubMed] [Google Scholar]
  26. Lüneburg U., Flohr H. Effects of melanocortins on vestibular compensation. Prog Brain Res. 1988;76:421–429. doi: 10.1016/s0079-6123(08)64529-x. [DOI] [PubMed] [Google Scholar]
  27. Nyakas C., Veldhuis H. D., De Wied D. Beneficial effect of chronic treatment with Org 2766 and alpha-MSH on impaired reversal learning of rats with bilateral lesions of the parafascicular area. Brain Res Bull. 1985 Sep;15(3):257–265. doi: 10.1016/0361-9230(85)90148-0. [DOI] [PubMed] [Google Scholar]
  28. O'Donohue T. L., Handelmann G. E., Chaconas T., Miller R. L., Jacobowitz D. M. Evidence that N-acetylation regulates the behavioral activity of alpha-MSH in the rat and human central nervous system. Peptides. 1981 Fall;2(3):333–344. doi: 10.1016/s0196-9781(81)80126-x. [DOI] [PubMed] [Google Scholar]
  29. Pestronk A., Drachman D. B., Griffin J. W. Effects of aging on nerve sprouting and regeneration. Exp Neurol. 1980 Oct;70(1):65–82. doi: 10.1016/0014-4886(80)90006-0. [DOI] [PubMed] [Google Scholar]
  30. Sawyer T. K., Sanfilippo P. J., Hruby V. J., Engel M. H., Heward C. B., Burnett J. B., Hadley M. E. 4-Norleucine, 7-D-phenylalanine-alpha-melanocyte-stimulating hormone: a highly potent alpha-melanotropin with ultralong biological activity. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5754–5758. doi: 10.1073/pnas.77.10.5754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sebille A., Hugelin A. Muscle reinnervation enhanced by isaxonine in man. Br J Clin Pharmacol. 1980 Mar;9(3):275–276. doi: 10.1111/j.1365-2125.1980.tb04838.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sebille A. Nerve regeneration in exogenous cerebral ganglioside-treated rats. Muscle Nerve. 1984 May;7(4):278–280. doi: 10.1002/mus.880070404. [DOI] [PubMed] [Google Scholar]
  33. Spruijt B. M., De Graan P. N., Eberle A. N., Gispen W. H. Comparison of structural requirements of alpha-MSH and ACTH for inducing excessive grooming and pigment dispersion. Peptides. 1985 Nov-Dec;6(6):1185–1189. doi: 10.1016/0196-9781(85)90448-6. [DOI] [PubMed] [Google Scholar]
  34. Van der Neut R., Bär P. R., Sodaar P., Gispen W. H. Trophic influences of alpha-MSH and ACTH4-10 on neuronal outgrowth in vitro. Peptides. 1988 Sep-Oct;9(5):1015–1020. doi: 10.1016/0196-9781(88)90082-4. [DOI] [PubMed] [Google Scholar]
  35. Van der Zee C. E., Brakkee J. H., Gispen W. H. alpha-MSH and Org.2766 in peripheral nerve regeneration: different routes of delivery. Eur J Pharmacol. 1988 Mar 15;147(3):351–357. doi: 10.1016/0014-2999(88)90168-9. [DOI] [PubMed] [Google Scholar]
  36. Verhaagen J., Edwards P. M., Jennekens F. G., Gispen W. H. Pharmacological aspects of the influence of melanocortins on the formation of regenerative peripheral nerve sprouts. Peptides. 1987 Jul-Aug;8(4):581–584. doi: 10.1016/0196-9781(87)90028-3. [DOI] [PubMed] [Google Scholar]
  37. Wolterink G., Van Ree J. M. Functional recovery after destruction of dopamine systems in the nucleus accumbens of rats. III. Further analysis of the facilitating effect of the ACTH-(4-9) analog ORG 2766. Brain Res. 1990 Jan 15;507(1):109–114. doi: 10.1016/0006-8993(90)90528-j. [DOI] [PubMed] [Google Scholar]
  38. van der Hoop R. G., Brakkee J. H., Kapelle A., Samson M., de Koning P., Gispen W. H. A new approach for the evaluation of recovery after peripheral nerve damage. J Neurosci Methods. 1988 Dec;26(2):111–116. doi: 10.1016/0165-0270(88)90159-8. [DOI] [PubMed] [Google Scholar]
  39. van der Zee C. E., Schuurman T., Traber J., Gispen W. H. Oral administration of nimodipine accelerates functional recovery following peripheral nerve damage in the rat. Neurosci Lett. 1987 Dec 16;83(1-2):143–148. doi: 10.1016/0304-3940(87)90231-x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES