Abstract
1. The location of the binding domain for agonist dihydropyridines (DHP) has been studied by comparing the action of (+)-202,791 and (-)-Bay K 8644 on Ba2+ currents (IBa) in whole cell patch clamp experiments. Drug effects were examined upon internal and external (extracellular) application in A7r5 smooth muscle cells and BC3H1 cells, a cell line expressing Ca channels of the skeletal muscle type. 2. Efficiency of internal drug application in the whole cell studies was demonstrated by inhibition of potassium currents and barium currents (IBa) upon internal perfusion with tetraethylammonium (TEA+) (10 mM) and the permanently charged phenylalkylamine, D 890 (100 microM) respectively. The uncharged DHP, (-)-STBODIPY-DHP (2 microM) was used to estimate the time course of internal perfusion by monitoring its fluorescence. 3. Intracellular application of (+)-202,791 and (-)-Bay K 8644 (5 microM) in patch clamp experiments was ineffective in stimulating Ca2+ channel currents in both cell lines. In contrast a 50 fold lower agonist concentration (0.1 microM (-)-Bay K 8644) applied to the external face of the membrane induced typical changes in tail currents and a current increase under conditions when up to 10 microM of the agonist was present in the intracellular perfusion solution. 4. In cell-attached patches in A7r5 cells, (-)-Bay K 8644 increased and (+)-PN 200,110 inhibited single channel activity when applied via the bath solution. This suggests partitioning and lateral diffusion of the DHPs in the lipid of the plasma membrane.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Biel M., Hullin R., Freundner S., Singer D., Dascal N., Flockerzi V., Hofmann F. Tissue-specific expression of high-voltage-activated dihydropyridine-sensitive L-type calcium channels. Eur J Biochem. 1991 Aug 15;200(1):81–88. doi: 10.1111/j.1432-1033.1991.tb21051.x. [DOI] [PubMed] [Google Scholar]
- Caffrey J. M., Brown A. M., Schneider M. D. Mitogens and oncogenes can block the induction of specific voltage-gated ion channels. Science. 1987 May 1;236(4801):570–573. doi: 10.1126/science.2437651. [DOI] [PubMed] [Google Scholar]
- Catterall W. A., Striessnig J. Receptor sites for Ca2+ channel antagonists. Trends Pharmacol Sci. 1992 Jun;13(6):256–262. doi: 10.1016/0165-6147(92)90079-l. [DOI] [PubMed] [Google Scholar]
- Cognard C., Romey G., Galizzi J. P., Fosset M., Lazdunski M. Dihydropyridine-sensitive Ca2+ channels in mammalian skeletal muscle cells in culture: electrophysiological properties and interactions with Ca2+ channel activator (Bay K8644) and inhibitor (PN 200-110). Proc Natl Acad Sci U S A. 1986 Mar;83(5):1518–1522. doi: 10.1073/pnas.83.5.1518. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Droogmans G., Callewaert G. Ca2+-channel current and its modification by the dihydropyridine agonist BAY k 8644 in isolated smooth muscle cells. Pflugers Arch. 1986 Mar;406(3):259–265. doi: 10.1007/BF00640911. [DOI] [PubMed] [Google Scholar]
- Glossmann H., Striessnig J. Molecular properties of calcium channels. Rev Physiol Biochem Pharmacol. 1990;114:1–105. doi: 10.1007/BFb0031018. [DOI] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Hering S., Kleppisch T., Timin E. N., Bodewei R. Characterization of the calcium channel state transitions induced by the enantiomers of the 1,4-dihydropyridine Sandoz 202 791 in neonatal rat heart cells. A nonmodulated receptor model. Pflugers Arch. 1989 Sep;414(6):690–700. doi: 10.1007/BF00582137. [DOI] [PubMed] [Google Scholar]
- Hescheler J., Pelzer D., Trube G., Trautwein W. Does the organic calcium channel blocker D600 act from inside or outside on the cardiac cell membrane? Pflugers Arch. 1982 Jun;393(4):287–291. doi: 10.1007/BF00581411. [DOI] [PubMed] [Google Scholar]
- Hess P., Lansman J. B., Tsien R. W. Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature. 1984 Oct 11;311(5986):538–544. doi: 10.1038/311538a0. [DOI] [PubMed] [Google Scholar]
- Hughes A. D., Hering S., Bolton T. B. Evidence that agonist and antagonist enantiomers of the dihydropyridine PN 202-791 act at different sites on the voltage-dependent calcium channel of vascular muscle. Br J Pharmacol. 1990 Sep;101(1):3–5. doi: 10.1111/j.1476-5381.1990.tb12076.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kameyama M., Hofmann F., Trautwein W. On the mechanism of beta-adrenergic regulation of the Ca channel in the guinea-pig heart. Pflugers Arch. 1985 Oct;405(3):285–293. doi: 10.1007/BF00582573. [DOI] [PubMed] [Google Scholar]
- Kamp T. J., Sanguinetti M. C., Miller R. J. Voltage- and use-dependent modulation of cardiac calcium channels by the dihydropyridine (+)-202-791. Circ Res. 1989 Feb;64(2):338–351. doi: 10.1161/01.res.64.2.338. [DOI] [PubMed] [Google Scholar]
- Kass R. S., Arena J. P., Chin S. Block of L-type calcium channels by charged dihydropyridines. Sensitivity to side of application and calcium. J Gen Physiol. 1991 Jul;98(1):63–75. doi: 10.1085/jgp.98.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knaus H. G., Moshammer T., Friedrich K., Kang H. C., Haugland R. P., Glossman H. In vivo labeling of L-type Ca2+ channels by fluorescent dihydropyridines: evidence for a functional, extracellular heparin-binding site. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3586–3590. doi: 10.1073/pnas.89.8.3586. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lacerda A. E., Brown A. M. Nonmodal gating of cardiac calcium channels as revealed by dihydropyridines. J Gen Physiol. 1989 Jun;93(6):1243–1273. doi: 10.1085/jgp.93.6.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marks T. N., Jones S. W. Calcium currents in the A7r5 smooth muscle-derived cell line. An allosteric model for calcium channel activation and dihydropyridine agonist action. J Gen Physiol. 1992 Mar;99(3):367–390. doi: 10.1085/jgp.99.3.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mason R. P., Gonye G. E., Chester D. W., Herbette L. G. Partitioning and location of Bay K 8644, 1,4-dihydropyridine calcium channel agonist, in model and biological membranes. Biophys J. 1989 Apr;55(4):769–778. doi: 10.1016/S0006-3495(89)82875-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mogul D. J., Singer D. H., Ten Eick R. E. Ionic diffusion in voltage-clamped isolated cardiac myocytes. Implications for Na,K-pump studies. Biophys J. 1989 Sep;56(3):565–577. doi: 10.1016/S0006-3495(89)82704-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakayama H., Taki M., Striessnig J., Glossmann H., Catterall W. A., Kanaoka Y. Identification of 1,4-dihydropyridine binding regions within the alpha 1 subunit of skeletal muscle Ca2+ channels by photoaffinity labeling with diazipine. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9203–9207. doi: 10.1073/pnas.88.20.9203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oliva C., Cohen I. S., Mathias R. T. Calculation of time constants for intracellular diffusion in whole cell patch clamp configuration. Biophys J. 1988 Nov;54(5):791–799. doi: 10.1016/S0006-3495(88)83017-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perez-Reyes E., Wei X. Y., Castellano A., Birnbaumer L. Molecular diversity of L-type calcium channels. Evidence for alternative splicing of the transcripts of three non-allelic genes. J Biol Chem. 1990 Nov 25;265(33):20430–20436. [PubMed] [Google Scholar]
- Pusch M., Neher E. Rates of diffusional exchange between small cells and a measuring patch pipette. Pflugers Arch. 1988 Feb;411(2):204–211. doi: 10.1007/BF00582316. [DOI] [PubMed] [Google Scholar]
- Regulla S., Schneider T., Nastainczyk W., Meyer H. E., Hofmann F. Identification of the site of interaction of the dihydropyridine channel blockers nitrendipine and azidopine with the calcium-channel alpha 1 subunit. EMBO J. 1991 Jan;10(1):45–49. doi: 10.1002/j.1460-2075.1991.tb07919.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soejima M., Noma A. Mode of regulation of the ACh-sensitive K-channel by the muscarinic receptor in rabbit atrial cells. Pflugers Arch. 1984 Apr;400(4):424–431. doi: 10.1007/BF00587544. [DOI] [PubMed] [Google Scholar]
- Striessnig J., Murphy B. J., Catterall W. A. Dihydropyridine receptor of L-type Ca2+ channels: identification of binding domains for [3H](+)-PN200-110 and [3H]azidopine within the alpha 1 subunit. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10769–10773. doi: 10.1073/pnas.88.23.10769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang J. M., Wang J., Quandt F. N., Eisenberg R. S. Perfusing pipettes. Pflugers Arch. 1990 May;416(3):347–350. doi: 10.1007/BF00392072. [DOI] [PubMed] [Google Scholar]
- Triggle D. J., Janis R. A. Calcium channel ligands. Annu Rev Pharmacol Toxicol. 1987;27:347–369. doi: 10.1146/annurev.pa.27.040187.002023. [DOI] [PubMed] [Google Scholar]
- Valdivia H. H., Coronado R. Internal and external effects of dihydropyridines in the calcium channel of skeletal muscle. J Gen Physiol. 1990 Jan;95(1):1–27. doi: 10.1085/jgp.95.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]

