Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Apr;108(4):948–958. doi: 10.1111/j.1476-5381.1993.tb13491.x

Effects of high calcium diet on arterial smooth muscle function and electrolyte balance in mineralocorticoid-salt hypertensive rats.

P Arvola 1, H Ruskoaho 1, I Pörsti 1
PMCID: PMC1908150  PMID: 8485634

Abstract

1. The effects of a high calcium diet (2.5%) on blood pressure, electrolyte balance, plasma and tissue atrial natriuretic peptide (ANP), cytosolic free Ca2+ concentration ([Ca2+]i), and arterial smooth muscle responses were studied in one-kidney deoxycorticosterone (DOC)-NaCl hypertensive Wistar rats. 2. Calcium supplementation for 8 weeks markedly attenuated the development of DOC-NaCl hypertension and the associated cardiac hypertrophy, and prevented the DOC-NaCl-induced sodium-volume retention as judged by reduced plasma Na+, and decreased plasma and ventricular ANP concentrations in high calcium-fed DOC-NaCl rats. However, calcium supplementation did not affect the DOC-NaCl-induced rise in platelet [Ca2+]i. 3. Smooth muscle contractions of isolated mesenteric arterial rings in response to depolarization by K+ (20-30 mM) were enhanced in DOC-NaCl-treated rats, this enhancement being abolished by concurrent oral calcium loading. The Ca2+ entry blocker nifedipine (10 nM) inhibited the contractions induced by K+ (30-125 mM) more effectively in DOC-NaCl rats than in controls, while the inhibition in calcium-loaded DOC-NaCl rats was significantly greater than in controls only with 30 mM K+. 4. The contractions of mesenteric arterial rings induced by omission of K+ from the organ baths were used to evaluate cell membrane permeability to ions. In chemically denervated rings the onset of the gradual rise in contractile force in K(+)-free medium occurred earlier, and the rate of the contraction was faster in DOC-NaCl-treated rats than in controls and high calcium-fed DOC-NaCl rats. Smooth muscle relaxation induced by 0.5 mM K+ upon K(+)-free contractions was clearly slower in DOC-NaCl rats than in controls and calcium-supplemented DOC-NaCl rats. 5. The functions of arterial smooth muscle Na+, Ca2+ exchange and Ca(2+)-ATPase were evaluated by the aortic contractions elicited by low Na+ medium, and the subsequent relaxation responses induced by Ca(2+)-free solution (in the presence of 5 mM caffeine, 1 microM nifedipine and 10 microM phentolamine). The rate of aortic low Na+ contractions (evaluating Ca2+ influx via Na+, Ca2+ exchange), as well as that of subsequent relaxations was slower in DOC-NaCl-treated rats than in controls, whether the relaxation was induced in normal (144.0 mM) or low (1.2 mM) organ bath Na+ concentration (reflecting Ca2+ extrusion by both Ca(2+)-ATPase and Na+, Ca2+ exchange, and by Ca(2+)-ATPase alone, respectively). However, in calcium-supplemented DOC-NaCl rats the aortic responses did not differ from control.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
948

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arvola P., Pörsti I., Vuorinen P., Pekki A., Vapaatalo H. Contractions induced by potassium-free solution and potassium relaxation in vascular smooth muscle of hypertensive and normotensive rats. Br J Pharmacol. 1992 May;106(1):157–165. doi: 10.1111/j.1476-5381.1992.tb14309.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashida T., Blaustein M. P. Regulation of cell calcium and contractility in mammalian arterial smooth muscle: the role of sodium-calcium exchange. J Physiol. 1987 Nov;392:617–635. doi: 10.1113/jphysiol.1987.sp016800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ashida T., Kuramochi M., Omae T. Increased sodium-calcium exchange in arterial smooth muscle of spontaneously hypertensive rats. Hypertension. 1989 Jun;13(6 Pt 2):890–895. doi: 10.1161/01.hyp.13.6.890. [DOI] [PubMed] [Google Scholar]
  4. Ayachi S. Increased dietary calcium lowers blood pressure in the spontaneously hypertensive rat. Metabolism. 1979 Dec;28(12):1234–1238. doi: 10.1016/0026-0495(79)90136-7. [DOI] [PubMed] [Google Scholar]
  5. Bohr D. F., Bruner C. A., Lamb F. S., Webb R. C. Physiology of vascular smooth muscle in relation to hypertension. Acta Physiol Scand Suppl. 1988;571:15–24. [PubMed] [Google Scholar]
  6. DiPette D. J., Greilich P. E., Kerr N. E., Graham G. A., Holland O. B. Systemic and regional hemodynamic effects of dietary calcium supplementation in mineralocorticoid hypertension. Hypertension. 1989 Jan;13(1):77–82. doi: 10.1161/01.hyp.13.1.77. [DOI] [PubMed] [Google Scholar]
  7. Evans G. H., Weaver C. M., Harrington D. D., Babbs C. F., Jr Association of magnesium deficiency with the blood pressure-lowering effects of calcium. J Hypertens. 1990 Apr;8(4):327–337. doi: 10.1097/00004872-199004000-00006. [DOI] [PubMed] [Google Scholar]
  8. Fouda A. K., Kaufmann A., Thorin E., Henrion D., Capdeville-Atkinson C., Atkinson J. The role of endogenous norepinephrine release in potassium-evoked vasoconstriction of the rat tail artery. Eur J Pharmacol. 1991 Nov 19;205(1):63–72. doi: 10.1016/0014-2999(91)90771-h. [DOI] [PubMed] [Google Scholar]
  9. Friedman S. M., Tanaka M. Increased sodium permeability and transport as primary events in the hypertensive response to deoxycorticosterone acetate (DOCA) in the rat. J Hypertens. 1987 Jun;5(3):341–345. doi: 10.1097/00004872-198706000-00013. [DOI] [PubMed] [Google Scholar]
  10. Fujimura A., Lowry R. W., Kem D. C. Calcium infusion increases plasma atrial natriuretic factor in spontaneously hypertensive rats. Hypertension. 1989 Jul;14(1):98–103. doi: 10.1161/01.hyp.14.1.98. [DOI] [PubMed] [Google Scholar]
  11. Furspan P. B., Rinaldi G. J., Hoffman K., Bohr D. F. Dietary calcium and cell membrane abnormality in genetic hypertension. Hypertension. 1989 Jun;13(6 Pt 2):727–730. doi: 10.1161/01.hyp.13.6.727. [DOI] [PubMed] [Google Scholar]
  12. Hermsmeyer K., Harder D. Membrane ATPase mechanism of K+-return relaxation in arterial muscles of stroke-prone SHR and WKY. Am J Physiol. 1986 Apr;250(4 Pt 1):C557–C562. doi: 10.1152/ajpcell.1986.250.4.C557. [DOI] [PubMed] [Google Scholar]
  13. Itoh H., Nakao K., Mukoyama M., Arai H., Yamada T., Saito Y., Shiono S., Hosoda K., Shirakami G., Suga S. Pathophysiological role of augmented atrial natriuretic polypeptide gene expression in DOCA-salt hypertension. Effects of atrial natriuretic polypeptide monoclonal antibody. Am J Hypertens. 1991 Jan;4(1 Pt 1):39–44. doi: 10.1093/ajh/4.1.39. [DOI] [PubMed] [Google Scholar]
  14. Karaki H., Weiss G. B. Calcium release in smooth muscle. Life Sci. 1988;42(2):111–122. doi: 10.1016/0024-3205(88)90674-1. [DOI] [PubMed] [Google Scholar]
  15. Kinnunen P., Taskinen T., Järvinen M., Ruskoaho H. Effect of phorbol ester on the release of atrial natriuretic peptide from the hypertrophied rat myocardium. Br J Pharmacol. 1991 Feb;102(2):453–461. doi: 10.1111/j.1476-5381.1991.tb12194.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lang R. E., Unger T., Ganten D. Atrial natriuretic peptide: a new factor in blood pressure control. J Hypertens. 1987 Jun;5(3):255–271. doi: 10.1097/00004872-198706000-00001. [DOI] [PubMed] [Google Scholar]
  17. Lasaridis A. N., Kaisis C. N., Zananiri K. I., Syrganis C. D., Tourkantonis A. A. Increased natriuretic ability and hypotensive effect during short-term high calcium intake in essential hypertension. Nephron. 1989;51(4):517–523. doi: 10.1159/000185386. [DOI] [PubMed] [Google Scholar]
  18. Lattion A. L., Michel J. B., Arnauld E., Corvol P., Soubrier F. Myocardial recruitment during ANF mRNA increase with volume overload in the rat. Am J Physiol. 1986 Nov;251(5 Pt 2):H890–H896. doi: 10.1152/ajpheart.1986.251.5.H890. [DOI] [PubMed] [Google Scholar]
  19. Magliola L., McMahon E. G., Jones A. W. Alterations in active Na-K transport during mineralocorticoid-salt hypertension in the rat. Am J Physiol. 1986 Apr;250(4 Pt 1):C540–C546. doi: 10.1152/ajpcell.1986.250.4.C540. [DOI] [PubMed] [Google Scholar]
  20. Matlib M. A. Role of sarcolemmal membrane sodium-calcium exchange in vascular smooth muscle tension. Ann N Y Acad Sci. 1991;639:531–542. doi: 10.1111/j.1749-6632.1991.tb17346.x. [DOI] [PubMed] [Google Scholar]
  21. McCarron D. A., Lucas P. A., Shneidman R. J., LaCour B., Drüeke T. Blood pressure development of the spontaneously hypertensive rat after concurrent manipulations of dietary Ca2+ and Na+. Relation to intestinal Ca2+ fluxes. J Clin Invest. 1985 Sep;76(3):1147–1154. doi: 10.1172/JCI112070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McCarron D. A., Morris C. D. Blood pressure response to oral calcium in persons with mild to moderate hypertension. A randomized, double-blind, placebo-controlled, crossover trial. Ann Intern Med. 1985 Dec;103(6 ):825–831. doi: 10.7326/0003-4819-103-6-825. [DOI] [PubMed] [Google Scholar]
  23. Morton J. J., Kenyon C. J., Beattie E. C. Hormone and electrolyte changes in post-deoxycorticosterone salt hypertension in rats. J Hypertens. 1990 Nov;8(11):1021–1026. doi: 10.1097/00004872-199011000-00008. [DOI] [PubMed] [Google Scholar]
  24. Mulvany M. J., Aalkjaer C., Petersen T. T. Intracellular sodium, membrane potential, and contractility of rat mesenteric small arteries. Circ Res. 1984 Jun;54(6):740–749. doi: 10.1161/01.res.54.6.740. [DOI] [PubMed] [Google Scholar]
  25. Mulvany M. J. Changes in sodium pump activity and vascular contraction. J Hypertens. 1985 Oct;3(5):429–436. [PubMed] [Google Scholar]
  26. Pamnani M. B., Chen S., Bryant H. J., Schooley J. F., Haddy F. J. Effect of increased dietary calcium on the development of reduced renal mass saline hypertension in rats. J Am Coll Nutr. 1990 Feb;9(1):35–43. doi: 10.1080/07315724.1990.10720347. [DOI] [PubMed] [Google Scholar]
  27. Pörsti I. Arterial smooth muscle contractions in spontaneously hypertensive rats on a high-calcium diet. J Hypertens. 1992 Mar;10(3):255–263. [PubMed] [Google Scholar]
  28. Pörsti I., Arvola P., Wuorela H., Ilkka M., Säynävälammi P., Huhtala H., Metsä-Ketelä T., Vapaatalo H. Effects of a high calcium diet and deoxycorticosterone on vascular smooth muscle responses in spontaneously hypertensive rats. J Hypertens. 1990 Sep;8(9):835–841. doi: 10.1097/00004872-199009000-00007. [DOI] [PubMed] [Google Scholar]
  29. Pörsti I., Arvola P., Wuorela H., Vapaatalo H. High calcium diet augments vascular potassium relaxation in hypertensive rats. Hypertension. 1992 Jan;19(1):85–92. doi: 10.1161/01.hyp.19.1.85. [DOI] [PubMed] [Google Scholar]
  30. Pörsti I., Wuorela H., Arvola P., Mämmi P., Nurmi A. K., Koistinaho J., Laippala P., Vapaatalo H. Effects of calcium supplementation and deoxycorticosterone on plasma atrial natriuretic peptide and electrolyte excretion in spontaneously hypertensive rats. Acta Physiol Scand. 1991 Mar;141(3):343–350. doi: 10.1111/j.1748-1716.1991.tb09090.x. [DOI] [PubMed] [Google Scholar]
  31. Resnick L. M., Sosa R. E., Corbett M. L., Gertner J. M., Sealey J. E., Laragh J. H. Effects of dietary calcium on sodium volume vs. renin-dependent forms of experimental hypertension. Trans Assoc Am Physicians. 1986;99:172–179. [PubMed] [Google Scholar]
  32. Ruskoaho H., Kinnunen P., Taskinen T., Vuolteenaho O., Leppäluoto J., Takala T. E. Regulation of ventricular atrial natriuretic peptide release in hypertrophied rat myocardium. Effects of exercise. Circulation. 1989 Aug;80(2):390–400. doi: 10.1161/01.cir.80.2.390. [DOI] [PubMed] [Google Scholar]
  33. Ruskoaho H., Leppäluoto J. Immunoreactive atrial natriuretic peptide in ventricles, atria, hypothalamus, and plasma of genetically hypertensive rats. Circ Res. 1988 Feb;62(2):384–394. doi: 10.1161/01.res.62.2.384. [DOI] [PubMed] [Google Scholar]
  34. Saito K., Sano H., Furuta Y., Fukuzaki H. Effect of oral calcium on blood pressure response in salt-loaded borderline hypertensive patients. Hypertension. 1989 Mar;13(3):219–226. doi: 10.1161/01.hyp.13.3.219. [DOI] [PubMed] [Google Scholar]
  35. Songu-Mize E., Bealer S. L., Caldwell R. W. Effect of AV3V lesions on development of DOCA-salt hypertension and vascular Na+-pump activity. Hypertension. 1982 Sep-Oct;4(5):575–580. doi: 10.1161/01.hyp.4.5.575. [DOI] [PubMed] [Google Scholar]
  36. Stull J. T., Gallagher P. J., Herring B. P., Kamm K. E. Vascular smooth muscle contractile elements. Cellular regulation. Hypertension. 1991 Jun;17(6 Pt 1):723–732. doi: 10.1161/01.hyp.17.6.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sugimoto T., Ishii M., Hirata Y., Matsuoka H., Sugimoto T., Miyata A., Toshimori T., Masuda H., Kangawa K., Matsuo H. Increased release of atrial natriuretic polypeptides in rats with DOCA-salt hypertension. Life Sci. 1986 Apr 14;38(15):1351–1358. doi: 10.1016/0024-3205(86)90467-4. [DOI] [PubMed] [Google Scholar]
  38. Vanhoutte P. M., Lorenz R. R. Na+,K+-ATPase inhibitors and the adrenergic neuroeffector interaction in the blood vessel wall. J Cardiovasc Pharmacol. 1984;6 (Suppl 1):S88–S94. doi: 10.1097/00005344-198400061-00016. [DOI] [PubMed] [Google Scholar]
  39. Wasserman R. H., Fullmer C. S. On the molecular mechanism of intestinal calcium transport. Adv Exp Med Biol. 1989;249:45–65. doi: 10.1007/978-1-4684-9111-1_5. [DOI] [PubMed] [Google Scholar]
  40. Wuorela H., Arvola P., Pörsti I., Siltaloppi E., Säynävälammi P., Vapaatalo H. The effect of high calcium intake on Ca2+ ATPase and the tissue Na:K ratio in spontaneously hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol. 1992 Jan;345(1):117–122. doi: 10.1007/BF00175478. [DOI] [PubMed] [Google Scholar]
  41. Wuorela H., Pörsti I., Arvola P., Mäkynen H., Vapaatalo H. Three levels of dietary calcium-effects on blood pressure and electrolyte balance in spontaneously hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol. 1992 Nov;346(5):542–549. doi: 10.1007/BF00169011. [DOI] [PubMed] [Google Scholar]
  42. Yang M. C., Lee M. Y., Kuo J. S., Pang P. K. Effect of calcium diet on the vascular reactivity of DOCA-salt hypertensive rats. Clin Exp Hypertens A. 1989;11(3):501–519. doi: 10.3109/10641968909035357. [DOI] [PubMed] [Google Scholar]
  43. Young E. W., Bukoski R. D., McCarron D. A. Calcium metabolism in experimental hypertension. Proc Soc Exp Biol Med. 1988 Feb;187(2):123–141. doi: 10.3181/00379727-187-42646. [DOI] [PubMed] [Google Scholar]
  44. Zikos D., Langman C., Gafter U., Delahaye B., Lau K. Chronic DOCA treatment increases Ca absorption: role of hypercalciuria and vitamin D. Am J Physiol. 1986 Sep;251(3 Pt 1):E279–E284. doi: 10.1152/ajpendo.1986.251.3.E279. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES