Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Apr;108(4):999–1005. doi: 10.1111/j.1476-5381.1993.tb13497.x

Pharmacological characteristics of the positive inotropic effect of angiotensin II in the rabbit ventricular myocardium.

A Ishihata 1, M Endoh 1
PMCID: PMC1908152  PMID: 8387388

Abstract

1. In order to elucidate the mechanism underlying the positive inotropic effect (PIE) of angiotensin II (AII), we measured changes in phosphoinositide hydrolysis and contractile force induced by AII in the rabbit ventricular myocardium. 2. AII (1.0 nM-3 microM) produced a PIE in a concentration-dependent manner in the presence of bupranolol (0.3 microM) and prazosin (0.1 microM), the maximal response being about 40% of that to isoprenaline and the EC50 30 nM. 3. The PIE of AII was associated with a concentration-dependent increase in the total duration of contraction; the time to peak force and the relaxation time were prolonged. 4. AII (10 nM-30 microM) elicited an accumulation of [3H]-inositol monophosphate in a concentration-dependent manner in rabbit ventricular slices prelabelled with myo-[3H]-inositol. 5. The PIE and the accumulation of [3H]-inositol monophosphate induced by AII were inhibited by a non-selective AII receptor antagonist, saralasin (10 nM-1 microM) and by a selective AT1 receptor antagonist, losartan (10 nM-1 microM), but not a selective AT2 receptor antagonist, PD 123319 (1 microM). 6. A tumour-promoting phorbol ester, phorbol 12,13-dibutyrate (PDBu, 10-100 nM), inhibited the AII-induced PIE and [3H]-inositol monophosphate accumulation in a concentration-dependent manner. 7. These results suggest that AII exerts a PIE through activation of AT1 receptors and subsequent acceleration of phosphoinositide hydrolysis. Activation of protein kinase C by PDBu may inhibit the AII-induced stimulation of phosphoinositide hydrolysis and thereby the PIE of AII in the rabbit ventricular myocardium.

Full text

PDF
999

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aceto J. F., Baker K. M. [Sar1]angiotensin II receptor-mediated stimulation of protein synthesis in chick heart cells. Am J Physiol. 1990 Mar;258(3 Pt 2):H806–H813. doi: 10.1152/ajpheart.1990.258.3.H806. [DOI] [PubMed] [Google Scholar]
  2. Anand-Srivastava M. B. Angiotensin II receptors negatively coupled to adenylate cyclase in rat myocardial sarcolemma. Involvement of inhibitory guanine nucleotide regulatory protein. Biochem Pharmacol. 1989 Feb 1;38(3):489–496. doi: 10.1016/0006-2952(89)90389-4. [DOI] [PubMed] [Google Scholar]
  3. Baker K. M., Aceto J. A. Characterization of avian angiotensin II cardiac receptors: coupling to mechanical activity and phosphoinositide metabolism. J Mol Cell Cardiol. 1989 Apr;21(4):375–382. doi: 10.1016/0022-2828(89)90648-2. [DOI] [PubMed] [Google Scholar]
  4. Baker K. M., Singer H. A., Aceto J. F. Angiotensin II receptor-mediated stimulation of cytosolic-free calcium and inositol phosphates in chick myocytes. J Pharmacol Exp Ther. 1989 Nov;251(2):578–585. [PubMed] [Google Scholar]
  5. Baker K. M., Singer H. A. Identification and characterization of guinea pig angiotensin II ventricular and atrial receptors: coupling to inositol phosphate production. Circ Res. 1988 May;62(5):896–904. doi: 10.1161/01.res.62.5.896. [DOI] [PubMed] [Google Scholar]
  6. Berridge M. J., Dawson R. M., Downes C. P., Heslop J. P., Irvine R. F. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J. 1983 May 15;212(2):473–482. doi: 10.1042/bj2120473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brock T. A., Rittenhouse S. E., Powers C. W., Ekstein L. S., Gimbrone M. A., Jr, Alexander R. W. Phorbol ester and 1-oleoyl-2-acetylglycerol inhibit angiotensin activation of phospholipase C in cultured vascular smooth muscle cells. J Biol Chem. 1985 Nov 15;260(26):14158–14162. [PubMed] [Google Scholar]
  8. Burgess G. M., Bird G. S., Obie J. F., Putney J. W., Jr The mechanism for synergism between phospholipase C- and adenylylcyclase-linked hormones in liver. Cyclic AMP-dependent kinase augments inositol trisphosphate-mediated Ca2+ mobilization without increasing the cellular levels of inositol polyphosphates. J Biol Chem. 1991 Mar 15;266(8):4772–4781. [PubMed] [Google Scholar]
  9. Chiu A. T., Herblin W. F., McCall D. E., Ardecky R. J., Carini D. J., Duncia J. V., Pease L. J., Wong P. C., Wexler R. R., Johnson A. L. Identification of angiotensin II receptor subtypes. Biochem Biophys Res Commun. 1989 Nov 30;165(1):196–203. doi: 10.1016/0006-291x(89)91054-1. [DOI] [PubMed] [Google Scholar]
  10. Dempsey P. J., McCallum Z. T., Kent K. M., Cooper T. Direct myocardial effects of angiotensin II. Am J Physiol. 1971 Feb;220(2):477–481. doi: 10.1152/ajplegacy.1971.220.2.477. [DOI] [PubMed] [Google Scholar]
  11. Dirksen R. T., Sheu S. S. Modulation of ventricular action potential by alpha 1-adrenoceptors and protein kinase C. Am J Physiol. 1990 Mar;258(3 Pt 2):H907–H911. doi: 10.1152/ajpheart.1990.258.3.H907. [DOI] [PubMed] [Google Scholar]
  12. Dudley D. T., Panek R. L., Major T. C., Lu G. H., Bruns R. F., Klinkefus B. A., Hodges J. C., Weishaar R. E. Subclasses of angiotensin II binding sites and their functional significance. Mol Pharmacol. 1990 Sep;38(3):370–377. [PubMed] [Google Scholar]
  13. Endoh M., Blinks J. R. Actions of sympathomimetic amines on the Ca2+ transients and contractions of rabbit myocardium: reciprocal changes in myofibrillar responsiveness to Ca2+ mediated through alpha- and beta-adrenoceptors. Circ Res. 1988 Feb;62(2):247–265. doi: 10.1161/01.res.62.2.247. [DOI] [PubMed] [Google Scholar]
  14. Endoh M., Hiramoto T., Ishihata A., Takanashi M., Inui J. Myocardial alpha 1-adrenoceptors mediate positive inotropic effect and changes in phosphatidylinositol metabolism. Species differences in receptor distribution and the intracellular coupling process in mammalian ventricular myocardium. Circ Res. 1991 May;68(5):1179–1190. doi: 10.1161/01.res.68.5.1179. [DOI] [PubMed] [Google Scholar]
  15. Freer R. J., Pappano A. J., Peach M. J., Bing K. T., McLean M. J., Vogel S., Sperelakis N. Mechanism for the postive inotropic effect of angiotensin II on isolated cardiac muscle. Circ Res. 1976 Aug;39(2):178–183. doi: 10.1161/01.res.39.2.178. [DOI] [PubMed] [Google Scholar]
  16. Ito H., Hirata Y., Hiroe M., Tsujino M., Adachi S., Takamoto T., Nitta M., Taniguchi K., Marumo F. Endothelin-1 induces hypertrophy with enhanced expression of muscle-specific genes in cultured neonatal rat cardiomyocytes. Circ Res. 1991 Jul;69(1):209–215. doi: 10.1161/01.res.69.1.209. [DOI] [PubMed] [Google Scholar]
  17. Kagaya A., Mikuni M., Kusumi I., Yamamoto H., Takahashi K. Serotonin-induced acute desensitization of serotonin2 receptors in human platelets via a mechanism involving protein kinase C. J Pharmacol Exp Ther. 1990 Oct;255(1):305–311. [PubMed] [Google Scholar]
  18. Katada T., Gilman A. G., Watanabe Y., Bauer S., Jakobs K. H. Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur J Biochem. 1985 Sep 2;151(2):431–437. doi: 10.1111/j.1432-1033.1985.tb09120.x. [DOI] [PubMed] [Google Scholar]
  19. Kem D. C., Johnson E. I., Capponi A. M., Chardonnens D., Lang U., Blondel B., Koshida H., Vallotton M. B. Effect of angiotensin II on cytosolic free calcium in neonatal rat cardiomyocytes. Am J Physiol. 1991 Jul;261(1 Pt 1):C77–C85. doi: 10.1152/ajpcell.1991.261.1.C77. [DOI] [PubMed] [Google Scholar]
  20. Kobayashi M., Furukawa Y., Chiba S. Positive chronotropic and inotropic effects of angiotensin II in the dog heart. Eur J Pharmacol. 1978 Jul 1;50(1):17–25. doi: 10.1016/0014-2999(78)90249-2. [DOI] [PubMed] [Google Scholar]
  21. Kurtz A., Penner R. Angiotensin II induces oscillations of intracellular calcium and blocks anomalous inward rectifying potassium current in mouse renal juxtaglomerular cells. Proc Natl Acad Sci U S A. 1989 May;86(9):3423–3427. doi: 10.1073/pnas.86.9.3423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kushida H., Hiramoto T., Satoh H., Endoh M. Phorbol ester does not mimic, but antagonizes the alpha-adrenoceptor-mediated positive inotropic effect in the rabbit papillary muscle. Naunyn Schmiedebergs Arch Pharmacol. 1988 Feb;337(2):169–176. doi: 10.1007/BF00169245. [DOI] [PubMed] [Google Scholar]
  23. Moravec C. S., Schluchter M. D., Paranandi L., Czerska B., Stewart R. W., Rosenkranz E., Bond M. Inotropic effects of angiotensin II on human cardiac muscle in vitro. Circulation. 1990 Dec;82(6):1973–1984. doi: 10.1161/01.cir.82.6.1973. [DOI] [PubMed] [Google Scholar]
  24. Resink T. J., Scott-Burden T., Weber E., Bühler F. R. Phorbol ester promotes a sustained down-regulation of endothelin receptors and cellular responses to endothelin in human vascular smooth muscle cells. Biochem Biophys Res Commun. 1990 Feb 14;166(3):1213–1219. doi: 10.1016/0006-291x(90)90995-y. [DOI] [PubMed] [Google Scholar]
  25. Rogers T. B. High affinity angiotensin II receptors in myocardial sarcolemmal membranes. Characterization of receptors and covalent linkage of 125I-angiotensin II to a membrane component of 116,000 daltons. J Biol Chem. 1984 Jul 10;259(13):8106–8114. [PubMed] [Google Scholar]
  26. Ross G., White F. N. Role of catecholamine release in cardiovascular responses to angiotensin. Am J Physiol. 1966 Dec;211(6):1419–1423. doi: 10.1152/ajplegacy.1966.211.6.1419. [DOI] [PubMed] [Google Scholar]
  27. Scott A. L., Chang R. S., Lotti V. J., Siegl P. K. Cardiac angiotensin receptors: effects of selective angiotensin II receptor antagonists, DUP 753 and PD 121981, in rabbit heart. J Pharmacol Exp Ther. 1992 Jun;261(3):931–935. [PubMed] [Google Scholar]
  28. Simpson P. Stimulation of hypertrophy of cultured neonatal rat heart cells through an alpha 1-adrenergic receptor and induction of beating through an alpha 1- and beta 1-adrenergic receptor interaction. Evidence for independent regulation of growth and beating. Circ Res. 1985 Jun;56(6):884–894. doi: 10.1161/01.res.56.6.884. [DOI] [PubMed] [Google Scholar]
  29. Smith J. B., Smith L., Brown E. R., Barnes D., Sabir M. A., Davis J. S., Farese R. V. Angiotensin II rapidly increases phosphatidate-phosphoinositide synthesis and phosphoinositide hydrolysis and mobilizes intracellular calcium in cultured arterial muscle cells. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7812–7816. doi: 10.1073/pnas.81.24.7812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Takanashi M., Endoh M. Characterization of positive inotropic effect of endothelin on mammalian ventricular myocardium. Am J Physiol. 1991 Sep;261(3 Pt 2):H611–H619. doi: 10.1152/ajpheart.1991.261.3.H611. [DOI] [PubMed] [Google Scholar]
  31. Whitebread S., Mele M., Kamber B., de Gasparo M. Preliminary biochemical characterization of two angiotensin II receptor subtypes. Biochem Biophys Res Commun. 1989 Aug 30;163(1):284–291. doi: 10.1016/0006-291x(89)92133-5. [DOI] [PubMed] [Google Scholar]
  32. Wright G. B., Alexander R. W., Ekstein L. S., Gimbrone M. A., Jr Characterization of the rabbit ventricular myocardial receptor for angiotensin II. Evidence for two sites of different affinities and specificities. Mol Pharmacol. 1983 Sep;24(2):213–221. [PubMed] [Google Scholar]
  33. Yuan S. H., Sunahara F. A., Sen A. K. Tumor-promoting phorbol esters inhibit cardiac functions and induce redistribution of protein kinase C in perfused beating rat heart. Circ Res. 1987 Sep;61(3):372–378. doi: 10.1161/01.res.61.3.372. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES