Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Nov;70(11):7485–7497. doi: 10.1128/jvi.70.11.7485-7497.1996

Identification of the major membrane and core proteins of vaccinia virus by two-dimensional electrophoresis.

O N Jensen 1, T Houthaeve 1, A Shevchenko 1, S Cudmore 1, T Ashford 1, M Mann 1, G Griffiths 1, J Krijnse Locker 1
PMCID: PMC190816  PMID: 8892867

Abstract

Vaccinia virus assembly has been well studied at the ultrastructural level, but little is known about the molecular events that occur during that process. Towards this goal, we have identified the major membrane and core proteins of the intracellular mature virus (IMV). Pure IMV preparations were subjected to Nonidet P-40 (NP-40) and dithiothreitol (DTT) treatment to separate the core proteins from the membrane proteins. These proteins were subsequently separated by two-dimensional (2D) gel electrophoresis, and the major polypeptide spots, as detected by silver staining and 35S labeling, were identified by either matrix-assisted laser desorption/ionization mass spectrometry, N-terminal amino acid sequencing, or immunoprecipitation with defined antibodies. Sixteen major spots that partitioned into the NP-40-DTT-soluble fraction were identified; 11 of these were previously described virally encoded proteins and 5 were cellular proteins, mostly of mitochondrial origin. The core fraction revealed four major spots of previously described core proteins, two of which were also detected in the membrane fraction. Subsequently, the NP-40-DTT-soluble and -insoluble fractions from purified virus preparations, separated by 2D gels, were compared with postnuclear supernatants of infected cells that had been metabolically labeled at late times (6 to 8 h) postinfection. This relatively short labeling period as well as the apparent shutoff of host protein synthesis allowed the selective detection in such postnuclear supernatants of virus-encoded proteins. These postnuclear supernatants were subsequently treated with Triton X-114 or with sodium carbonate to distinguish the membrane proteins from the soluble proteins. We have identified the major late membrane and nonmembrane proteins of the IMV as they occur in the virus as well as in infected cells. This 2D gel map should provide an important reference for future molecular studies of vaccinia virus morphogenesis.

Full Text

The Full Text of this article is available as a PDF (881.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldick C. J., Jr, Moss B. Resistance of vaccinia virus to rifampicin conferred by a single nucleotide substitution near the predicted NH2 terminus of a gene encoding an Mr 62,000 polypeptide. Virology. 1987 Jan;156(1):138–145. doi: 10.1016/0042-6822(87)90444-2. [DOI] [PubMed] [Google Scholar]
  2. Biemann K., Scoble H. A. Characterization by tandem mass spectrometry of structural modifications in proteins. Science. 1987 Aug 28;237(4818):992–998. doi: 10.1126/science.3303336. [DOI] [PubMed] [Google Scholar]
  3. Blasco R., Moss B. Extracellular vaccinia virus formation and cell-to-cell virus transmission are prevented by deletion of the gene encoding the 37,000-Dalton outer envelope protein. J Virol. 1991 Nov;65(11):5910–5920. doi: 10.1128/jvi.65.11.5910-5920.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
  5. CAIRNS J. The initiation of vaccinia infection. Virology. 1960 Jul;11:603–623. doi: 10.1016/0042-6822(60)90103-3. [DOI] [PubMed] [Google Scholar]
  6. Carrasco L., Bravo R. Specific proteins synthesized during the viral lytic cycle in vaccinia virus-infected HeLa cells: analysis by high-resolution, two-dimensional gel electrophoresis. J Virol. 1986 May;58(2):569–577. doi: 10.1128/jvi.58.2.569-577.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chertov OYu, Telezhinskaya I. N., Zaitseva E. V., Golubeva T. B., Zinov'ev V. V., Ovechkina L. G., Mazkova L. B., Malygin E. G. Amino acid sequence determination of vaccinia virus immunodominant protein p35 and identification of the gene. Biomed Sci. 1991;2(2):151–154. [PubMed] [Google Scholar]
  8. Cudmore S., Blasco R., Vincentelli R., Esteban M., Sodeik B., Griffiths G., Krijnse Locker J. A vaccinia virus core protein, p39, is membrane associated. J Virol. 1996 Oct;70(10):6909–6921. doi: 10.1128/jvi.70.10.6909-6921.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Easterbrook K. B. Controlled degradation of vaccinia virions in vitro: an electron microscopic study. J Ultrastruct Res. 1966 Mar;14(5):484–496. doi: 10.1016/s0022-5320(66)80077-1. [DOI] [PubMed] [Google Scholar]
  10. Ericsson M., Cudmore S., Shuman S., Condit R. C., Griffiths G., Locker J. K. Characterization of ts 16, a temperature-sensitive mutant of vaccinia virus. J Virol. 1995 Nov;69(11):7072–7086. doi: 10.1128/jvi.69.11.7072-7086.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Essani K., Dales S. Biogenesis of vaccinia: evidence for more than 100 polypeptides in the virion. Virology. 1979 Jun;95(2):385–394. doi: 10.1016/0042-6822(79)90493-8. [DOI] [PubMed] [Google Scholar]
  12. Fenn J. B., Mann M., Meng C. K., Wong S. F., Whitehouse C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989 Oct 6;246(4926):64–71. doi: 10.1126/science.2675315. [DOI] [PubMed] [Google Scholar]
  13. Franke C. A., Wilson E. M., Hruby D. E. Use of a cell-free system to identify the vaccinia virus L1R gene product as the major late myristylated virion protein M25. J Virol. 1990 Dec;64(12):5988–5996. doi: 10.1128/jvi.64.12.5988-5996.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fujiki Y., Hubbard A. L., Fowler S., Lazarow P. B. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol. 1982 Apr;93(1):97–102. doi: 10.1083/jcb.93.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goebel S. J., Johnson G. P., Perkus M. E., Davis S. W., Winslow J. P., Paoletti E. The complete DNA sequence of vaccinia virus. Virology. 1990 Nov;179(1):247-66, 517-63. doi: 10.1016/0042-6822(90)90294-2. [DOI] [PubMed] [Google Scholar]
  16. Henzel W. J., Billeci T. M., Stults J. T., Wong S. C., Grimley C., Watanabe C. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5011–5015. doi: 10.1073/pnas.90.11.5011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hillenkamp F., Karas M., Beavis R. C., Chait B. T. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem. 1991 Dec 15;63(24):1193A–1203A. doi: 10.1021/ac00024a002. [DOI] [PubMed] [Google Scholar]
  18. Hiller G., Weber K. Golgi-derived membranes that contain an acylated viral polypeptide are used for vaccinia virus envelopment. J Virol. 1985 Sep;55(3):651–659. doi: 10.1128/jvi.55.3.651-659.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hunt D. F., Yates J. R., 3rd, Shabanowitz J., Winston S., Hauer C. R. Protein sequencing by tandem mass spectrometry. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6233–6237. doi: 10.1073/pnas.83.17.6233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ichihashi Y., Oie M., Tsuruhara T. Location of DNA-binding proteins and disulfide-linked proteins in vaccinia virus structural elements. J Virol. 1984 Jun;50(3):929–938. doi: 10.1128/jvi.50.3.929-938.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. JOKLIK W. K. The purification fo four strains of poxvirus. Virology. 1962 Sep;18:9–18. doi: 10.1016/0042-6822(62)90172-1. [DOI] [PubMed] [Google Scholar]
  22. James P., Quadroni M., Carafoli E., Gonnet G. Protein identification by mass profile fingerprinting. Biochem Biophys Res Commun. 1993 Aug 31;195(1):58–64. doi: 10.1006/bbrc.1993.2009. [DOI] [PubMed] [Google Scholar]
  23. Jensen O. N., Vorm O., Mann M. Sequence patterns produced by incomplete enzymatic digestion or one-step Edman degradation of peptide mixtures as probes for protein database searches. Electrophoresis. 1996 May;17(5):938–944. doi: 10.1002/elps.1150170516. [DOI] [PubMed] [Google Scholar]
  24. Jindal S., Young R. A. Vaccinia virus infection induces a stress response that leads to association of Hsp70 with viral proteins. J Virol. 1992 Sep;66(9):5357–5362. doi: 10.1128/jvi.66.9.5357-5362.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Johnson G. P., Goebel S. J., Paoletti E. An update on the vaccinia virus genome. Virology. 1993 Oct;196(2):381–401. doi: 10.1006/viro.1993.1494. [DOI] [PubMed] [Google Scholar]
  26. Kao S. Y., Bauer W. R. Biosynthesis and phosphorylation of vaccinia virus structural protein VP11. Virology. 1987 Aug;159(2):399–407. doi: 10.1016/0042-6822(87)90479-x. [DOI] [PubMed] [Google Scholar]
  27. Krijnse-Locker J., Schleich S., Rodriguez D., Goud B., Snijder E. J., Griffiths G. The role of a 21-kDa viral membrane protein in the assembly of vaccinia virus from the intermediate compartment. J Biol Chem. 1996 Jun 21;271(25):14950–14958. doi: 10.1074/jbc.271.25.14950. [DOI] [PubMed] [Google Scholar]
  28. Maa J. S., Esteban M. Structural and functional studies of a 39,000-Mr immunodominant protein of vaccinia virus. J Virol. 1987 Dec;61(12):3910–3919. doi: 10.1128/jvi.61.12.3910-3919.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mann M., Højrup P., Roepstorff P. Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol Mass Spectrom. 1993 Jun;22(6):338–345. doi: 10.1002/bms.1200220605. [DOI] [PubMed] [Google Scholar]
  30. Mann M., Talbo G. Developments in matrix-assisted laser desorption/ionization peptide mass spectrometry. Curr Opin Biotechnol. 1996 Feb;7(1):11–19. doi: 10.1016/s0958-1669(96)80089-9. [DOI] [PubMed] [Google Scholar]
  31. Mann M., Wilm M. Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem. 1994 Dec 15;66(24):4390–4399. doi: 10.1021/ac00096a002. [DOI] [PubMed] [Google Scholar]
  32. Mohandas A. R., Dales S. Involvement of spicules in the formation of vaccinia virus envelopes elucidated by a conditional lethal mutant. Virology. 1995 Dec 20;214(2):494–502. doi: 10.1006/viro.1995.0060. [DOI] [PubMed] [Google Scholar]
  33. Moss B., Rosenblum E. N., Katz E., Grimley P. M. Rifampicin: a specific inhibitor of vaccinia virus assembly. Nature. 1969 Dec 27;224(5226):1280–1284. doi: 10.1038/2241280a0. [DOI] [PubMed] [Google Scholar]
  34. Moss B., Rosenblum E. N. Letter: Protein cleavage and poxvirus morphogenesis: tryptic peptide analysis of core precursors accumulated by blocking assembly with rifampicin. J Mol Biol. 1973 Dec 5;81(2):267–269. doi: 10.1016/0022-2836(73)90195-2. [DOI] [PubMed] [Google Scholar]
  35. Niles E. G., Seto J. Vaccinia virus gene D8 encodes a virion transmembrane protein. J Virol. 1988 Oct;62(10):3772–3778. doi: 10.1128/jvi.62.10.3772-3778.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Oie M., Ichihashi Y. Characterization of vaccinia polypeptides. Virology. 1981 Aug;113(1):263–276. doi: 10.1016/0042-6822(81)90153-7. [DOI] [PubMed] [Google Scholar]
  37. Pappin D. J., Hojrup P., Bleasby A. J. Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol. 1993 Jun 1;3(6):327–332. doi: 10.1016/0960-9822(93)90195-t. [DOI] [PubMed] [Google Scholar]
  38. Patterson S. D., Aebersold R. Mass spectrometric approaches for the identification of gel-separated proteins. Electrophoresis. 1995 Oct;16(10):1791–1814. doi: 10.1002/elps.11501601299. [DOI] [PubMed] [Google Scholar]
  39. Payne L. Polypeptide composition of extracellular enveloped vaccinia virus. J Virol. 1978 Jul;27(1):28–37. doi: 10.1128/jvi.27.1.28-37.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pogo B. G., Katz J. R., Dales S. Biogenesis of poxviruses: synthesis and phosphorylation of a basic protein associated with the DNA. Virology. 1975 Apr;64(2):531–543. doi: 10.1016/0042-6822(75)90130-0. [DOI] [PubMed] [Google Scholar]
  41. Ravanello M. P., Hruby D. E. Conditional lethal expression of the vaccinia virus L1R myristylated protein reveals a role in virion assembly. J Virol. 1994 Oct;68(10):6401–6410. doi: 10.1128/jvi.68.10.6401-6410.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rodriguez D., Rodriguez J. R., Esteban M. The vaccinia virus 14-kilodalton fusion protein forms a stable complex with the processed protein encoded by the vaccinia virus A17L gene. J Virol. 1993 Jun;67(6):3435–3440. doi: 10.1128/jvi.67.6.3435-3440.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Rodriguez J. F., Esteban M. Mapping and nucleotide sequence of the vaccinia virus gene that encodes a 14-kilodalton fusion protein. J Virol. 1987 Nov;61(11):3550–3554. doi: 10.1128/jvi.61.11.3550-3554.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Roos N., Cyrklaff M., Cudmore S., Blasco R., Krijnse-Locker J., Griffiths G. A novel immunogold cryoelectron microscopic approach to investigate the structure of the intracellular and extracellular forms of vaccinia virus. EMBO J. 1996 May 15;15(10):2343–2355. [PMC free article] [PubMed] [Google Scholar]
  45. Rosemond H., Moss B. Phosphoprotein component of vaccinia virions. J Virol. 1973 Jun;11(6):961–970. doi: 10.1128/jvi.11.6.961-970.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Rosenfeld J., Capdevielle J., Guillemot J. C., Ferrara P. In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal Biochem. 1992 May 15;203(1):173–179. doi: 10.1016/0003-2697(92)90061-b. [DOI] [PubMed] [Google Scholar]
  47. Sarov I., Joklik W. K. Studies on the nature and location of the capsid polypeptides of vaccinia virions. Virology. 1972 Nov;50(2):579–592. doi: 10.1016/0042-6822(72)90409-6. [DOI] [PubMed] [Google Scholar]
  48. Schmelz M., Sodeik B., Ericsson M., Wolffe E. J., Shida H., Hiller G., Griffiths G. Assembly of vaccinia virus: the second wrapping cisterna is derived from the trans Golgi network. J Virol. 1994 Jan;68(1):130–147. doi: 10.1128/jvi.68.1.130-147.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Sedger L., Ruby J. Heat shock response to vaccinia virus infection. J Virol. 1994 Jul;68(7):4685–4689. doi: 10.1128/jvi.68.7.4685-4689.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Shevchenko A., Wilm M., Vorm O., Jensen O. N., Podtelejnikov A. V., Neubauer G., Shevchenko A., Mortensen P., Mann M. A strategy for identifying gel-separated proteins in sequence databases by MS alone. Biochem Soc Trans. 1996 Aug;24(3):893–896. doi: 10.1042/bst0240893. [DOI] [PubMed] [Google Scholar]
  51. Shevchenko A., Wilm M., Vorm O., Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem. 1996 Mar 1;68(5):850–858. doi: 10.1021/ac950914h. [DOI] [PubMed] [Google Scholar]
  52. Sodeik B., Doms R. W., Ericsson M., Hiller G., Machamer C. E., van 't Hof W., van Meer G., Moss B., Griffiths G. Assembly of vaccinia virus: role of the intermediate compartment between the endoplasmic reticulum and the Golgi stacks. J Cell Biol. 1993 May;121(3):521–541. doi: 10.1083/jcb.121.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Sodeik B., Griffiths G., Ericsson M., Moss B., Doms R. W. Assembly of vaccinia virus: effects of rifampin on the intracellular distribution of viral protein p65. J Virol. 1994 Feb;68(2):1103–1114. doi: 10.1128/jvi.68.2.1103-1114.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Takahashi T., Oie M., Ichihashi Y. N-terminal amino acid sequences of vaccinia virus structural proteins. Virology. 1994 Aug 1;202(2):844–852. doi: 10.1006/viro.1994.1406. [DOI] [PubMed] [Google Scholar]
  55. Tartaglia J., Piccini A., Paoletti E. Vaccinia virus rifampicin-resistance locus specifies a late 63,000 Da gene product. Virology. 1986 Apr 15;150(1):45–54. doi: 10.1016/0042-6822(86)90264-3. [DOI] [PubMed] [Google Scholar]
  56. VanSlyke J. K., Franke C. A., Hruby D. E. Proteolytic maturation of vaccinia virus core proteins: identification of a conserved motif at the N termini of the 4b and 25K virion proteins. J Gen Virol. 1991 Feb;72(Pt 2):411–416. doi: 10.1099/0022-1317-72-2-411. [DOI] [PubMed] [Google Scholar]
  57. Vanslyke J. K., Whitehead S. S., Wilson E. M., Hruby D. E. The multistep proteolytic maturation pathway utilized by vaccinia virus P4a protein: a degenerate conserved cleavage motif within core proteins. Virology. 1991 Aug;183(2):467–478. doi: 10.1016/0042-6822(91)90976-i. [DOI] [PubMed] [Google Scholar]
  58. Whitehead S. S., Hruby D. E. Differential utilization of a conserved motif for the proteolytic maturation of vaccinia virus proteins. Virology. 1994 Apr;200(1):154–161. doi: 10.1006/viro.1994.1174. [DOI] [PubMed] [Google Scholar]
  59. Wilm M., Shevchenko A., Houthaeve T., Breit S., Schweigerer L., Fotsis T., Mann M. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature. 1996 Feb 1;379(6564):466–469. doi: 10.1038/379466a0. [DOI] [PubMed] [Google Scholar]
  60. Wittek R., Hänggi M., Hiller G. Mapping of a gene coding for a major late structural polypeptide on the vaccinia virus genome. J Virol. 1984 Feb;49(2):371–378. doi: 10.1128/jvi.49.2.371-378.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Wolffe E. J., Moore D. M., Peters P. J., Moss B. Vaccinia virus A17L open reading frame encodes an essential component of nascent viral membranes that is required to initiate morphogenesis. J Virol. 1996 May;70(5):2797–2808. doi: 10.1128/jvi.70.5.2797-2808.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Yang W. P., Bauer W. R. Purification and characterization of vaccinia virus structural protein VP8. Virology. 1988 Dec;167(2):578–584. [PubMed] [Google Scholar]
  63. Yates J. R., 3rd, Speicher S., Griffin P. R., Hunkapiller T. Peptide mass maps: a highly informative approach to protein identification. Anal Biochem. 1993 Nov 1;214(2):397–408. doi: 10.1006/abio.1993.1514. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES