Abstract
1. Endothelin-3 (ET-3) at concentrations below those which caused contraction (30 nM) elicited endothelium-dependent relaxation followed by rebound contraction in rat isolated thoracic aorta. 2. Endothelin-1 also relaxed the rat aorta with a similar potency. 3. The nitric oxide (NO) synthase inhibitor, NG-nitro L-arginine, the radical scavenger, haemoglobin and the soluble guanylate cyclase inhibitor, methylene blue, each inhibited the ET-3-induced relaxation. 4. The calmodulin inhibitor, calmidazolium, considerably attenuated the relaxation caused by ET-3 without affecting that to nitroprusside. 5. Concentrations of ET-3 that were necessary to induce the relaxation also caused concentration-dependent elevation of guanosine 3':5'-cyclic monophosphate (cyclic GMP) levels. 6. NG-nitro L-arginine, haemoglobin, methylene blue, calmidazolium and removal of the endothelium completely abolished ET-3-stimulated cyclic GMP production. 7. These results suggest that ET-3 triggers NO formation possibly via ETB receptors on the endothelium to activate soluble guanylate cyclase, which in turn stimulates cyclic GMP production and smooth muscle relaxation. The enzyme contributing to the NO formation may be of the calcium/calmodulin-dependent, constitutive type.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adeagbo A. S., Triggle C. R. Effects of some inorganic divalent cations and protein kinase C inhibitors on endothelium-dependent relaxation in rat isolated aorta and mesenteric arteries. J Cardiovasc Pharmacol. 1991 Oct;18(4):511–521. doi: 10.1097/00005344-199110000-00006. [DOI] [PubMed] [Google Scholar]
- Arai H., Hori S., Aramori I., Ohkubo H., Nakanishi S. Cloning and expression of a cDNA encoding an endothelin receptor. Nature. 1990 Dec 20;348(6303):730–732. doi: 10.1038/348730a0. [DOI] [PubMed] [Google Scholar]
- Bevan J. A., Duckles S. P., Lee T. J. Histamine potentiation of nerve- and drug-induced responses of a rabbit cerebral artery. Circ Res. 1975 May;36(5):647–653. doi: 10.1161/01.res.36.5.647. [DOI] [PubMed] [Google Scholar]
- Busse R., Mülsch A. Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. FEBS Lett. 1990 Jun 4;265(1-2):133–136. doi: 10.1016/0014-5793(90)80902-u. [DOI] [PubMed] [Google Scholar]
- Chiba Y., Mikoda N., Kawasaki H., Ito K. Endothelium-dependent relaxant action of platelet activating factor in the rat mesenteric artery. Naunyn Schmiedebergs Arch Pharmacol. 1990 Jan-Feb;341(1-2):68–73. doi: 10.1007/BF00195060. [DOI] [PubMed] [Google Scholar]
- Emori T., Hirata Y., Kanno K., Ohta K., Eguchi S., Imai T., Shichiri M., Marumo F. Endothelin-3 stimulates production of endothelium-derived nitric oxide via phosphoinositide breakdown. Biochem Biophys Res Commun. 1991 Jan 15;174(1):228–235. doi: 10.1016/0006-291x(91)90510-e. [DOI] [PubMed] [Google Scholar]
- Filep J. G., Battistini B., Côté Y. P., Beaudoin A. R., Sirois P. Endothelin-1 induces prostacyclin release from bovine aortic endothelial cells. Biochem Biophys Res Commun. 1991 May 31;177(1):171–176. doi: 10.1016/0006-291x(91)91964-e. [DOI] [PubMed] [Google Scholar]
- Fozard J. R., Part M. L. The role of nitric oxide in the regional vasodilator effects of endothelin-1 in the rat. Br J Pharmacol. 1992 Mar;105(3):744–750. doi: 10.1111/j.1476-5381.1992.tb09049.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukuda N., Izumi Y., Soma M., Watanabe Y., Watanabe M., Hatano M., Sakuma I., Yasuda H. Effects of indomethacin, endothelium-denudation, methylene blue and L-NG-monomethyl arginine on the vasoactive effects of endothelin-3. Jpn J Pharmacol. 1991 Mar;55(3):375–380. doi: 10.1254/jjp.55.375. [DOI] [PubMed] [Google Scholar]
- Fukuda N., Izumi Y., Soma M., Watanabe Y., Watanabe M., Hatano M., Sakuma I., Yasuda H. L-NG-monomethyl arginine inhibits the vasodilating effects of low dose of endothelin-3 on rat mesenteric arteries. Biochem Biophys Res Commun. 1990 Mar 16;167(2):739–745. doi: 10.1016/0006-291x(90)92087-g. [DOI] [PubMed] [Google Scholar]
- Förstermann U., Pollock J. S., Schmidt H. H., Heller M., Murad F. Calmodulin-dependent endothelium-derived relaxing factor/nitric oxide synthase activity is present in the particulate and cytosolic fractions of bovine aortic endothelial cells. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1788–1792. doi: 10.1073/pnas.88.5.1788. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gruetter C. A., Kadowitz P. J., Ignarro L. J. Methylene blue inhibits coronary arterial relaxation and guanylate cyclase activation by nitroglycerin, sodium nitrite, and amyl nitrite. Can J Physiol Pharmacol. 1981 Feb;59(2):150–156. doi: 10.1139/y81-025. [DOI] [PubMed] [Google Scholar]
- Hasunuma K., Rodman D. M., O'Brien R. F., McMurtry I. F. Endothelin 1 causes pulmonary vasodilation in rats. Am J Physiol. 1990 Jul;259(1 Pt 2):H48–H54. doi: 10.1152/ajpheart.1990.259.1.H48. [DOI] [PubMed] [Google Scholar]
- Honma M., Satoh T., Takezawa J., Ui M. An ultrasensitive method for the simultaneous determination of cyclic AMP and cyclic GMP in small-volume samples from blood and tissue. Biochem Med. 1977 Dec;18(3):257–273. doi: 10.1016/0006-2944(77)90060-6. [DOI] [PubMed] [Google Scholar]
- Illiano S., Nagao T., Vanhoutte P. M. Calmidazolium, a calmodulin inhibitor, inhibits endothelium-dependent relaxations resistant to nitro-L-arginine in the canine coronary artery. Br J Pharmacol. 1992 Oct;107(2):387–392. doi: 10.1111/j.1476-5381.1992.tb12756.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Le Monnier de Gouville A. C., Lippton H., Cohen G., Cavero I., Hyman A. Vasodilator activity of endothelin-1 and endothelin-3: rapid development of cross-tachyphylaxis and dependence on the rate of endothelin administration. J Pharmacol Exp Ther. 1990 Sep;254(3):1024–1028. [PubMed] [Google Scholar]
- Lippton H. L., Cohen G. A., McMurtry I. F., Hyman A. L. Pulmonary vasodilation to endothelin isopeptides in vivo is mediated by potassium channel activation. J Appl Physiol (1985) 1991 Feb;70(2):947–952. doi: 10.1152/jappl.1991.70.2.947. [DOI] [PubMed] [Google Scholar]
- Lippton H. L., Hauth T. A., Summer W. R., Hyman A. L. Endothelin produces pulmonary vasoconstriction and systemic vasodilation. J Appl Physiol (1985) 1989 Feb;66(2):1008–1012. doi: 10.1152/jappl.1989.66.2.1008. [DOI] [PubMed] [Google Scholar]
- Martin W., Villani G. M., Jothianandan D., Furchgott R. F. Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J Pharmacol Exp Ther. 1985 Mar;232(3):708–716. [PubMed] [Google Scholar]
- Mehta J. L., Lawson D. L., Yang B. C., Mehta P., Nichols W. W. Modulation of vascular tone by endothelin-1: role of preload, endothelial integrity and concentration of endothelin-1. Br J Pharmacol. 1992 May;106(1):127–132. doi: 10.1111/j.1476-5381.1992.tb14304.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore P. K., al-Swayeh O. A., Chong N. W., Evans R. A., Gibson A. L-NG-nitro arginine (L-NOARG), a novel, L-arginine-reversible inhibitor of endothelium-dependent vasodilatation in vitro. Br J Pharmacol. 1990 Feb;99(2):408–412. doi: 10.1111/j.1476-5381.1990.tb14717.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moritoki H., Hisayama T., Takeuchi S., Miyano H., Kondoh W. Involvement of nitric oxide pathway in the PAF-induced relaxation of rat thoracic aorta. Br J Pharmacol. 1992 Sep;107(1):196–201. doi: 10.1111/j.1476-5381.1992.tb14486.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagao T., Illiano S., Vanhoutte P. M. Calmodulin antagonists inhibit endothelium-dependent hyperpolarization in the canine coronary artery. Br J Pharmacol. 1992 Oct;107(2):382–386. doi: 10.1111/j.1476-5381.1992.tb12755.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Namiki A., Hirata Y., Ishikawa M., Moroi M., Aikawa J., Machii K. Endothelin-1- and endothelin-3-induced vasorelaxation via common generation of endothelium-derived nitric oxide. Life Sci. 1992;50(10):677–682. doi: 10.1016/0024-3205(92)90470-a. [DOI] [PubMed] [Google Scholar]
- Rapoport R. M., Draznin M. B., Murad F. Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation. Nature. 1983 Nov 10;306(5939):174–176. doi: 10.1038/306174a0. [DOI] [PubMed] [Google Scholar]
- Rapoport R. M., Murad F. Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ Res. 1983 Mar;52(3):352–357. doi: 10.1161/01.res.52.3.352. [DOI] [PubMed] [Google Scholar]
- Sakamoto A., Yanagisawa M., Sakurai T., Takuwa Y., Yanagisawa H., Masaki T. Cloning and functional expression of human cDNA for the ETB endothelin receptor. Biochem Biophys Res Commun. 1991 Jul 31;178(2):656–663. doi: 10.1016/0006-291x(91)90158-4. [DOI] [PubMed] [Google Scholar]
- Sakurai T., Yanagisawa M., Takuwa Y., Miyazaki H., Kimura S., Goto K., Masaki T. Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature. 1990 Dec 20;348(6303):732–735. doi: 10.1038/348732a0. [DOI] [PubMed] [Google Scholar]
- Schini V. B., Vanhoutte P. M. Inhibitors of calmodulin impair the constitutive but not the inducible nitric oxide synthase activity in the rat aorta. J Pharmacol Exp Ther. 1992 May;261(2):553–559. [PubMed] [Google Scholar]
- Standen N. B., Quayle J. M., Davies N. W., Brayden J. E., Huang Y., Nelson M. T. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science. 1989 Jul 14;245(4914):177–180. doi: 10.1126/science.2501869. [DOI] [PubMed] [Google Scholar]
- Topouzis S., Huggins J. P., Pelton J. T., Miller R. C. Modulation by endothelium of the responses induced by endothelin-1 and by some of its analogues in rat isolated aorta. Br J Pharmacol. 1991 Feb;102(2):545–549. doi: 10.1111/j.1476-5381.1991.tb12208.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warner T. D., de Nucci G., Vane J. R. Rat endothelin is a vasodilator in the isolated perfused mesentery of the rat. Eur J Pharmacol. 1989 Jan 17;159(3):325–326. doi: 10.1016/0014-2999(89)90167-2. [DOI] [PubMed] [Google Scholar]
- Weinheimer G., Osswald H. Inhibition of endothelium-dependent smooth muscle relaxation by calmodulin antagonists. Naunyn Schmiedebergs Arch Pharmacol. 1986 Apr;332(4):391–397. doi: 10.1007/BF00500093. [DOI] [PubMed] [Google Scholar]
- Williams D. L., Jr, Jones K. L., Pettibone D. J., Lis E. V., Clineschmidt B. V. Sarafotoxin S6c: an agonist which distinguishes between endothelin receptor subtypes. Biochem Biophys Res Commun. 1991 Mar 15;175(2):556–561. doi: 10.1016/0006-291x(91)91601-8. [DOI] [PubMed] [Google Scholar]
- Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]
- de Nucci G., Thomas R., D'Orleans-Juste P., Antunes E., Walder C., Warner T. D., Vane J. R. Pressor effects of circulating endothelin are limited by its removal in the pulmonary circulation and by the release of prostacyclin and endothelium-derived relaxing factor. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9797–9800. doi: 10.1073/pnas.85.24.9797. [DOI] [PMC free article] [PubMed] [Google Scholar]
