Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Apr;108(4):1143–1149. doi: 10.1111/j.1476-5381.1993.tb13518.x

Postnatal changes in N-methyl-D-aspartate receptor binding and stimulation by glutamate and glycine of [3H]-MK-801 binding in human temporal cortex.

P Slater 1, S E McConnell 1, S W D'Souza 1, A J Barson 1
PMCID: PMC1908166  PMID: 8097954

Abstract

1. Homogenates of human infant and adult temporal cortex were used to measure [3H]-TCP and [3H]-MK-801 binding to the N-methyl-D-aspartate (NMDA)-coupled ion channel phencyclidine site. 2. Both [3H]-TCP and [3H]-MK-801 binding increased in infant cortex by > 100% between term and 26 weeks suggesting that the numbers of NMDA receptors increase during postnatal brain development. 3. [3H]-MK-801 binding was measured under non-equilibrium conditions in temporal cortex homogenates with the addition of 100 microM of L-glutamate plus a range of concentrations (0.05 microM-100 microM) of glycine. Glutamate and glycine increased [3H]-MK-801 binding by stimulating NMDA receptors and improving [3H]-MK-801 access to ion channel binding sites; maximum stimulation in adult and infant temporal cortex was achieved with 100 microM glutamate plus 5 microM glycine; a higher concentration of glycine (50 microM) reduced [3H]-MK-801 binding to below maximum. 4. The stimulation by 100 microM glutamate plus 5 microM glycine of [3H]-MK-801 binding in infant temporal cortex was affected by postnatal age. For example, although the stimulation of [3H]-MK-801 binding in 5-6 week infant cortex (236% of basal) was similar to adult cortex (230% of basal), in samples taken from infants aged 5-6 months glycine (plus glutamate) stimulation of [3H]-MK-801 binding (392% of basal) was substantially greater than that measured in adult temporal cortex. 5. The binding of [3H]-glycine to the glycine modulatory site associated with the NMDA receptor in infant cortex also increased with postnatal age by > 100% between term and 26 weeks.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1143

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bertolino M., Vicini S. Voltage-dependent block by strychnine of N-methyl-D-aspartic acid-activated cationic channels in rat cortical neurons in culture. Mol Pharmacol. 1988 Aug;34(2):98–103. [PubMed] [Google Scholar]
  2. Bode-Greuel K. M., Singer W. The development of N-methyl-D-aspartate receptors in cat visual cortex. Brain Res Dev Brain Res. 1989 Apr 1;46(2):197–204. doi: 10.1016/0165-3806(89)90283-6. [DOI] [PubMed] [Google Scholar]
  3. Bowe M. A., Nadler J. V. Developmental increase in the sensitivity to magnesium of NMDA receptors on CA1 hippocampal pyramidal cells. Brain Res Dev Brain Res. 1990 Oct 1;56(1):55–61. doi: 10.1016/0165-3806(90)90164-t. [DOI] [PubMed] [Google Scholar]
  4. Chaudieu I., Mount H., Quirion R., Boksa P. Transient postnatal increases in excitatory amino acid binding sites in rat ventral mesencephalon. Neurosci Lett. 1991 Dec 9;133(2):267–270. doi: 10.1016/0304-3940(91)90585-h. [DOI] [PubMed] [Google Scholar]
  5. Chessell I. P., Procter A. W., Francis P. T., Bowen D. M. D-cycloserine, a putative cognitive enhancer, facilitates activation of the N-methyl-D-aspartate receptor-ionophore complex in Alzheimer brain. Brain Res. 1991 Nov 29;565(2):345–348. doi: 10.1016/0006-8993(91)91668-q. [DOI] [PubMed] [Google Scholar]
  6. Coan E. J., Collingridge G. L. Magnesium ions block an N-methyl-D-aspartate receptor-mediated component of synaptic transmission in rat hippocampus. Neurosci Lett. 1985 Jan 7;53(1):21–26. doi: 10.1016/0304-3940(85)90091-6. [DOI] [PubMed] [Google Scholar]
  7. D'Souza S. W., McConnell S. E., Slater P., Barson A. J. N-methyl-D-aspartate binding sites in neonatal and adult brain. Lancet. 1992 May 16;339(8803):1240–1240. doi: 10.1016/0140-6736(92)91188-e. [DOI] [PubMed] [Google Scholar]
  8. Dupont J. L., Gardette R., Crepel F. Postnatal development of the chemosensitivity of rat cerebellar Purkinje cells to excitatory amino acids. An in vitro study. Brain Res. 1987 Jul;431(1):59–68. doi: 10.1016/0165-3806(87)90195-7. [DOI] [PubMed] [Google Scholar]
  9. Foster A. C., Wong E. H. The novel anticonvulsant MK-801 binds to the activated state of the N-methyl-D-aspartate receptor in rat brain. Br J Pharmacol. 1987 Jun;91(2):403–409. doi: 10.1111/j.1476-5381.1987.tb10295.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Greenamyre J. T. The role of glutamate in neurotransmission and in neurologic disease. Arch Neurol. 1986 Oct;43(10):1058–1063. doi: 10.1001/archneur.1986.00520100062016. [DOI] [PubMed] [Google Scholar]
  11. Gu Q. A., Bear M. F., Singer W. Blockade of NMDA-receptors prevents ocularity changes in kitten visual cortex after reversed monocular deprivation. Brain Res Dev Brain Res. 1989 Jun 1;47(2):281–288. doi: 10.1016/0165-3806(89)90183-1. [DOI] [PubMed] [Google Scholar]
  12. Harris E. W., Ganong A. H., Cotman C. W. Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors. Brain Res. 1984 Dec 3;323(1):132–137. doi: 10.1016/0006-8993(84)90275-0. [DOI] [PubMed] [Google Scholar]
  13. Hosford D. A., Bonhaus D. W., McNamara J. O. A radiohistochemical measure of [3H]TCP binding to the activated NMDA-receptor-gated ion channel in rat brain. Brain Res. 1990 May 21;516(2):192–200. doi: 10.1016/0006-8993(90)90918-2. [DOI] [PubMed] [Google Scholar]
  14. Huettner J. E., Bean B. P. Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1307–1311. doi: 10.1073/pnas.85.4.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Huttenlocher P. R. Morphometric study of human cerebral cortex development. Neuropsychologia. 1990;28(6):517–527. doi: 10.1016/0028-3932(90)90031-i. [DOI] [PubMed] [Google Scholar]
  16. Huttenlocher P. R., de Courten C., Garey L. J., Van der Loos H. Synaptogenesis in human visual cortex--evidence for synapse elimination during normal development. Neurosci Lett. 1982 Dec 13;33(3):247–252. doi: 10.1016/0304-3940(82)90379-2. [DOI] [PubMed] [Google Scholar]
  17. Insel T. R., Miller L. P., Gelhard R. E. The ontogeny of excitatory amino acid receptors in rat forebrain--I. N-methyl-D-aspartate and quisqualate receptors. Neuroscience. 1990;35(1):31–43. doi: 10.1016/0306-4522(90)90117-m. [DOI] [PubMed] [Google Scholar]
  18. Johnson J. W., Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 1987 Feb 5;325(6104):529–531. doi: 10.1038/325529a0. [DOI] [PubMed] [Google Scholar]
  19. Kleckner N. W., Dingledine R. Regulation of hippocampal NMDA receptors by magnesium and glycine during development. Brain Res Mol Brain Res. 1991 Sep;11(2):151–159. [PubMed] [Google Scholar]
  20. Kleinschmidt A., Bear M. F., Singer W. Blockade of "NMDA" receptors disrupts experience-dependent plasticity of kitten striate cortex. Science. 1987 Oct 16;238(4825):355–358. doi: 10.1126/science.2443978. [DOI] [PubMed] [Google Scholar]
  21. Kornhuber J., Mack-Burkhardt F., Kornhuber M. E., Riederer P. [3H]MK-801 binding sites in post-mortem human frontal cortex. Eur J Pharmacol. 1989 Mar 29;162(3):483–490. doi: 10.1016/0014-2999(89)90339-7. [DOI] [PubMed] [Google Scholar]
  22. Kornhuber J., Retz W., Riederer P., Heinsen H., Fritze J. Effect of antemortem and postmortem factors on [3H]glutamate binding in the human brain. Neurosci Lett. 1988 Nov 11;93(2-3):312–317. doi: 10.1016/0304-3940(88)90101-2. [DOI] [PubMed] [Google Scholar]
  23. McDonald J. W., Johnston M. V. Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Res Brain Res Rev. 1990 Jan-Apr;15(1):41–70. doi: 10.1016/0165-0173(90)90011-c. [DOI] [PubMed] [Google Scholar]
  24. McDonald J. W., Silverstein F. S., Johnston M. V. Neurotoxicity of N-methyl-D-aspartate is markedly enhanced in developing rat central nervous system. Brain Res. 1988 Aug 30;459(1):200–203. doi: 10.1016/0006-8993(88)90306-x. [DOI] [PubMed] [Google Scholar]
  25. McPherson G. A. A practical computer-based approach to the analysis of radioligand binding experiments. Comput Programs Biomed. 1983 Aug-Oct;17(1-2):107–113. doi: 10.1016/0010-468x(83)90031-4. [DOI] [PubMed] [Google Scholar]
  26. Meldrum B., Garthwaite J. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci. 1990 Sep;11(9):379–387. doi: 10.1016/0165-6147(90)90184-a. [DOI] [PubMed] [Google Scholar]
  27. Monaghan D. T., Bridges R. J., Cotman C. W. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol. 1989;29:365–402. doi: 10.1146/annurev.pa.29.040189.002053. [DOI] [PubMed] [Google Scholar]
  28. Morris R. G., Anderson E., Lynch G. S., Baudry M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. 1986 Feb 27-Mar 5Nature. 319(6056):774–776. doi: 10.1038/319774a0. [DOI] [PubMed] [Google Scholar]
  29. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  30. Piggott M. A., Perry E. K., Perry R. H., Court J. A. [3H]MK-801 binding to the NMDA receptor complex, and its modulation in human frontal cortex during development and aging. Brain Res. 1992 Aug 21;588(2):277–286. doi: 10.1016/0006-8993(92)91586-4. [DOI] [PubMed] [Google Scholar]
  31. Procter A. W., Stratmann G. C., Francis P. T., Lowe S. L., Bertolucci P. H., Bowen D. M. Characterisation of the glycine modulatory site of the N-methyl-D-aspartate receptor-ionophore complex in human brain. J Neurochem. 1991 Jan;56(1):299–310. doi: 10.1111/j.1471-4159.1991.tb02596.x. [DOI] [PubMed] [Google Scholar]
  32. Procter A. W., Wong E. H., Stratmann G. C., Lowe S. L., Bowen D. M. Reduced glycine stimulation of [3H]MK-801 binding in Alzheimer's disease. J Neurochem. 1989 Sep;53(3):698–704. doi: 10.1111/j.1471-4159.1989.tb11760.x. [DOI] [PubMed] [Google Scholar]
  33. Purves D., Lichtman J. W. Elimination of synapses in the developing nervous system. Science. 1980 Oct 10;210(4466):153–157. doi: 10.1126/science.7414326. [DOI] [PubMed] [Google Scholar]
  34. Quarum M. L., Parker J. D., Keana J. F., Weber E. (+)-[3H]MK-801 binding sites in postmortem human brain. J Neurochem. 1990 Apr;54(4):1163–1168. doi: 10.1111/j.1471-4159.1990.tb01944.x. [DOI] [PubMed] [Google Scholar]
  35. Ransom R. W., Stec N. L. Cooperative modulation of [3H]MK-801 binding to the N-methyl-D-aspartate receptor-ion channel complex by L-glutamate, glycine, and polyamines. J Neurochem. 1988 Sep;51(3):830–836. doi: 10.1111/j.1471-4159.1988.tb01818.x. [DOI] [PubMed] [Google Scholar]
  36. Rauschecker J. P., Hahn S. Ketamine-xylazine anaesthesia blocks consolidation of ocular dominance changes in kitten visual cortex. Nature. 1987 Mar 12;326(6109):183–185. doi: 10.1038/326183a0. [DOI] [PubMed] [Google Scholar]
  37. Shinohara K., Nishikawa T., Ishii S., Yamazaki K., Takahashi K. Embryonic and postnatal development of N-(1-[2-thienyl]cyclohexyl)[3H]piperidine binding sites in rat forebrain homogenates and slices. Neurosci Lett. 1989 Dec 15;107(1-3):307–312. doi: 10.1016/0304-3940(89)90836-7. [DOI] [PubMed] [Google Scholar]
  38. Shinohara K., Nishikawa T., Yamazaki K., Takahashi K. Ontogeny of strychnine-insensitive [3H]glycine binding sites in rat forebrain. Neurosci Lett. 1989 Nov 6;105(3):307–311. doi: 10.1016/0304-3940(89)90638-1. [DOI] [PubMed] [Google Scholar]
  39. Siviy S. M., Buchwald N. A., Levine M. S. Enhanced responses to NMDA receptor activation in the developing cat caudate nucleus. Neurosci Lett. 1991 Oct 28;132(1):77–81. doi: 10.1016/0304-3940(91)90437-x. [DOI] [PubMed] [Google Scholar]
  40. Slater P., McConnell S., D'Souza S. W., Barson A. J. Age-related changes in binding to excitatory amino acid uptake sites in human cerebellum. Brain Res. 1992 May 8;579(2):219–226. doi: 10.1016/0006-8993(92)90054-d. [DOI] [PubMed] [Google Scholar]
  41. Slater P., McConnell S., D'Souza S. W., Barson A. J., Simpson M. D., Gilchrist A. C. Age-related changes in binding to excitatory amino acid uptake site in temporal cortex of human brain. Brain Res Dev Brain Res. 1992 Feb 21;65(2):157–160. doi: 10.1016/0165-3806(92)90174-u. [DOI] [PubMed] [Google Scholar]
  42. Tremblay E., Roisin-Lallemand M. P., Ben-Ari Y. Developmental study of [3H]TCP and [3H]glycine binding sites in the rat hippocampus. Brain Res Dev Brain Res. 1990 Dec 1;57(1):21–28. doi: 10.1016/0165-3806(90)90180-7. [DOI] [PubMed] [Google Scholar]
  43. Tremblay E., Roisin M. P., Represa A., Charriaut-Marlangue C., Ben-Ari Y. Transient increased density of NMDA binding sites in the developing rat hippocampus. Brain Res. 1988 Oct 4;461(2):393–396. doi: 10.1016/0006-8993(88)90275-2. [DOI] [PubMed] [Google Scholar]
  44. Tsumoto T., Hagihara K., Sato H., Hata Y. NMDA receptors in the visual cortex of young kittens are more effective than those of adult cats. Nature. 1987 Jun 11;327(6122):513–514. doi: 10.1038/327513a0. [DOI] [PubMed] [Google Scholar]
  45. Vignon J., Chicheportiche R., Chicheportiche M., Kamenka J. M., Geneste P., Lazdunski M. [3H]TCP: a new tool with high affinity for the PCP receptor in rat brain. Brain Res. 1983 Nov 28;280(1):194–197. doi: 10.1016/0006-8993(83)91193-9. [DOI] [PubMed] [Google Scholar]
  46. Wong E. H., Kemp J. A., Priestley T., Knight A. R., Woodruff G. N., Iversen L. L. The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc Natl Acad Sci U S A. 1986 Sep;83(18):7104–7108. doi: 10.1073/pnas.83.18.7104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wong E. H., Knight A. R., Ransom R. Glycine modulates [3H]MK-801 binding to the NMDA receptor in rat brain. Eur J Pharmacol. 1987 Oct 27;142(3):487–488. doi: 10.1016/0014-2999(87)90095-1. [DOI] [PubMed] [Google Scholar]
  48. Wong E. H., Knight A. R., Woodruff G. N. [3H]MK-801 labels a site on the N-methyl-D-aspartate receptor channel complex in rat brain membranes. J Neurochem. 1988 Jan;50(1):274–281. doi: 10.1111/j.1471-4159.1988.tb13260.x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES