Abstract
1. Flosequinan, milrinone, isoprenaline and forskolin given intravenously at similarly hypotensive doses have been evaluated in separate studies for their effect on ischaemia-induced arrhythmias and on ventricular cyclic nucleotide content following coronary artery ligation in the pentobarbitone anaesthetized rat. 2. Flosequinan did not affect mortality or arrhythmias following coronary artery ligation in either study and no change in ventricular cyclic nucleotide content was observed. 3. Isoprenaline caused a significant increase in mortality (P < 0.05) in both studies whereas milrinone and forskolin caused a significant increase in mortality in only one of the two studies conducted. All three agents caused significant increases in cyclic AMP which were associated with increased incidence of arrhythmias. 4. When compared at similarly hypotensive doses, flosequinan, in contrast to milrinone, isoprenaline and forskolin, did not influence ischaemia-induced arrhythmias or raise ventricular cyclic nucleotide levels in the anesthetized rat.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Clark C., Foreman M. I., Kane K. A., McDonald F. M., Parratt J. R. Coronary artery ligation in anesthetized rats as a method for the production of experimental dysrhythmias and for the determination of infarct size. J Pharmacol Methods. 1980 Jun;3(4):357–368. doi: 10.1016/0160-5402(80)90077-7. [DOI] [PubMed] [Google Scholar]
- Corr P. B., Witkowski F. X., Sobel B. E. Mechanisms contributing to malignant dysrhythmias induced by ischemia in the cat. J Clin Invest. 1978 Jan;61(1):109–119. doi: 10.1172/JCI108908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daugherty A., Frayn K. N., Redfern W. S., Woodward B. The role of catecholamines in the production of ischaemia-induced ventricular arrhythmias in the rat in vivo and in vitro. Br J Pharmacol. 1986 Jan;87(1):265–277. doi: 10.1111/j.1476-5381.1986.tb10180.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frodsham G., Jones R. B. Effect of flosequinan upon isoenzymes of phosphodiesterase from guinea-pig cardiac and vascular smooth muscle. Eur J Pharmacol. 1992 Feb 18;211(3):383–391. doi: 10.1016/0014-2999(92)90396-l. [DOI] [PubMed] [Google Scholar]
- Gristwood R. W., Beleta J., Bou J., Cardelús I., Fernández A. G., Llenas J., Berga P. Studies on the cardiac actions of flosequinan in vitro. Br J Pharmacol. 1992 Apr;105(4):985–991. doi: 10.1111/j.1476-5381.1992.tb09089.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kane K. A., Morcillo-Sanchez E. J., Parratt J. R., Rodger I. W., Shahid M. The relationship between coronary artery occlusion-induced arrhythmias and myocardial cyclic nucleotide levels in the anaesthetized rat. Br J Pharmacol. 1985 Jan;84(1):139–145. [PMC free article] [PubMed] [Google Scholar]
- Lubbe W. F., Nguyen T., West E. J. Modulation of myocardial cyclic AMP and vulnerability to fibrillation in the rat heart. Fed Proc. 1983 May 15;42(8):2460–2464. [PubMed] [Google Scholar]
- Manning A. S., Kinoshita K., Buschmans E., Coltart D. J., Hearse D. J. The genesis of arrhythmias during myocardial ischemia. Dissociation between changes in cyclic adenosine monophosphate and electrical instability in the rat. Circ Res. 1985 Nov;57(5):668–675. doi: 10.1161/01.res.57.5.668. [DOI] [PubMed] [Google Scholar]
- Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
- Marshall R. J., Muir A. W., Winslow E. Development of a severe model of early coronary artery ligation-induced dysrhythmias in the anaesthetized rat. Br J Pharmacol. 1981 Aug;73(4):951–959. doi: 10.1111/j.1476-5381.1981.tb08750.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Packer M. Effect of phosphodiesterase inhibitors on survival of patients with chronic congestive heart failure. Am J Cardiol. 1989 Jan 3;63(2):41A–45A. doi: 10.1016/0002-9149(89)90392-5. [DOI] [PubMed] [Google Scholar]
- Podzuweit T., Els D. J., McCarthy J. Cyclic AMP mediated arrhythmias induced in the ischaemic pig heart. Basic Res Cardiol. 1981 Jul-Aug;76(4):443–448. doi: 10.1007/BF01908339. [DOI] [PubMed] [Google Scholar]
- SELYE H., BAJUSZ E., GRASSO S., MENDELL P. Simple techniques for the surgical occlusion of coronary vessels in the rat. Angiology. 1960 Oct;11:398–407. doi: 10.1177/000331976001100505. [DOI] [PubMed] [Google Scholar]
- Tosaki A., Woodward B., Yamamoto F., Hearse D. J. Isoproterenol and the genesis of reperfusion-induced arrhythmias in isolated rat heart: adrenoceptor or free radical-mediated mechanisms? J Cardiovasc Pharmacol. 1990 Mar;15(3):398–407. doi: 10.1097/00005344-199003000-00009. [DOI] [PubMed] [Google Scholar]
- Worthington M. G., Opie L. H. Contrasting effects of cyclic AMP increase caused by beta-adrenergic stimulation or by adenylate cyclase activation on ventricular fibrillation threshold of isolated rat heart. J Cardiovasc Pharmacol. 1992 Oct;20(4):595–600. doi: 10.1097/00005344-199210000-00013. [DOI] [PubMed] [Google Scholar]
- Yates D. B. Pharmacology of flosequinan. Am Heart J. 1991 Mar;121(3 Pt 1):974–983. doi: 10.1016/0002-8703(91)90229-b. [DOI] [PubMed] [Google Scholar]
