Abstract
1. Neostigmine and BW284C51 induced concentration-dependent contractions in human isolated bronchial preparations whereas tetraisopropylpyrophosphoramide (iso-OMPA) was inactive on airway resting tone. 2. Neostigmine (0.1 microM) or iso-OMPA (100 microM) increased acetylcholine sensitivity in human isolated bronchial preparations but did not alter methacholine or carbachol concentration-effect curves. 3. In the presence of iso-OMPA (10 microM) the bronchial rings were more sensitive to neostigmine. The pD2 values were, control: 6.05 +/- 0.15 and treated: 6.91 +/- 0.14. 4. Neostigmine or iso-OMPA retarded the degradation of acetylcholine when this substrate was exogenously added to human isolated airways. A marked reduction of acetylcholine degradation was observed in the presence of both inhibitors. Exogenous butyrylcholine degradation was prevented by iso-OMPA (10 microM) but not by neostigmine (0.1 microM). 5. These results suggest the presence of butyrylcholinesterase activity in human bronchial muscle and this enzyme may co-regulate the degradation of acetylcholine in this tissue.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AMBACHE N., LESSIN A. W. Classification of intestinomotor drugs by means of type D botulinum toxin. J Physiol. 1955 Mar 28;127(3):449–478. doi: 10.1113/jphysiol.1955.sp005270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- AUSTIN L., BERRY W. K. Two selective inhibitors of cholinesterase. Biochem J. 1953 Jul;54(4):695–700. [PMC free article] [PubMed] [Google Scholar]
- Aas P., Veiteberg T., Fonnum F. In vitro effects of soman on bronchial smooth muscle. Biochem Pharmacol. 1986 Jun 1;35(11):1793–1799. doi: 10.1016/0006-2952(86)90294-7. [DOI] [PubMed] [Google Scholar]
- Adler M., Filbert M. G. Role of butyrylcholinesterase in canine tracheal smooth muscle function. FEBS Lett. 1990 Jul 2;267(1):107–110. doi: 10.1016/0014-5793(90)80300-8. [DOI] [PubMed] [Google Scholar]
- Adler M., Reutter S. A., Moore D. H., Filbert M. G. Regulation of acetylcholine hydrolysis in canine tracheal smooth muscle. Eur J Pharmacol. 1991 Nov 19;205(1):73–79. doi: 10.1016/0014-2999(91)90772-i. [DOI] [PubMed] [Google Scholar]
- Appleyard M. E., Smith A. D. Secretion of acetylcholinesterase and butyrylcholinesterase from the guinea-pig isolated ileum. Br J Pharmacol. 1989 Jun;97(2):490–498. doi: 10.1111/j.1476-5381.1989.tb11977.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Atack J. R., Yu Q. S., Soncrant T. T., Brossi A., Rapoport S. I. Comparative inhibitory effects of various physostigmine analogs against acetyl- and butyrylcholinesterases. J Pharmacol Exp Ther. 1989 Apr;249(1):194–202. [PubMed] [Google Scholar]
- CARLYLE R. F. THE MODE OF ACTION OF NEOSTIGMINE AND PHYSOSTIGMINE ON THE GUINEA-PIG TRACHEALIS MUSCLE. Br J Pharmacol Chemother. 1963 Aug;21:137–149. doi: 10.1111/j.1476-5381.1963.tb01509.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chatonnet A., Lockridge O. Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem J. 1989 Jun 15;260(3):625–634. doi: 10.1042/bj2600625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DE BURGH DALY M. The effects of anticholinesterases on the bronchioles and pulmonary blood vessels in isolated perfused lungs of the dog. Br J Pharmacol Chemother. 1957 Dec;12(4):504–512. doi: 10.1111/j.1476-5381.1957.tb00173.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DE CANDOLE C. A., DOUGLAS W. W., EVANS C. L., HOLMES R., SPENCER K. E., TORRANCE R. W., WILSON K. M. The failure of respiration in death by anticholinesterase poisoning. Br J Pharmacol Chemother. 1953 Dec;8(4):466–475. doi: 10.1111/j.1476-5381.1953.tb01350.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daniel E. E., Kannan M., Davis C., Posey-Daniel V. Ultrastructural studies on the neuromuscular control of human tracheal and bronchial muscle. Respir Physiol. 1986 Jan;63(1):109–128. doi: 10.1016/0034-5687(86)90034-4. [DOI] [PubMed] [Google Scholar]
- Haber P., Harmuth P., Wolf C., Mayr N., Zeithofer J. Akute Effekte von Prostigmin auf Lungenfunktion und Atmung von Patienten mit Myasthenia gravis in Ruhe und bei dosierter Ergometerbelastung. Respiration. 1987;52(1):59–68. doi: 10.1159/000195305. [DOI] [PubMed] [Google Scholar]
- Ito Y., Suzuki H., Aizawa H., Hakoda H., Hirose T. The spontaneous electrical and mechanical activity of human bronchial smooth muscle: its modulation by drugs. Br J Pharmacol. 1989 Dec;98(4):1249–1260. doi: 10.1111/j.1476-5381.1989.tb12671.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KOELLE W. A., KOELLE G. B. The localization of external or functional acetylcholinesterase at the synapses of autonomic ganglia. J Pharmacol Exp Ther. 1959 May;126(1):1–8. [PubMed] [Google Scholar]
- Kirkpatrick C. T., Rooney P. J. Contractures produced by carbamate anticholinesterases in bovine tracheal smooth muscle. Clin Exp Pharmacol Physiol. 1982 Nov-Dec;9(6):603–611. doi: 10.1111/j.1440-1681.1982.tb00831.x. [DOI] [PubMed] [Google Scholar]
- Mak J. C., Barnes P. J. Autoradiographic visualization of muscarinic receptor subtypes in human and guinea pig lung. Am Rev Respir Dis. 1990 Jun;141(6):1559–1568. doi: 10.1164/ajrccm/141.6.1559. [DOI] [PubMed] [Google Scholar]
- Mann S. P. The innervation of mammalian bronchial smooth muscle: the localization of catecholamines and cholinesterases. Histochem J. 1971 Sep;3(5):319–331. doi: 10.1007/BF01005014. [DOI] [PubMed] [Google Scholar]
- Mittag T. W., Ehrenpreis S., Patrick P. Some properties of cholinesterases in intact guinea-pig ileum in vitro. Arch Int Pharmacodyn Ther. 1971 Jun;191(2):270–278. [PubMed] [Google Scholar]
- Partanen M., Laitinen A., Hervonen A., Toivanen M., Laitinen L. A. Catecholamine- and acetylcholinesterase-containing nerves in human lower respiratory tract. Histochemistry. 1982;76(2):175–188. doi: 10.1007/BF00501920. [DOI] [PubMed] [Google Scholar]
- Pauluhn J., Machemer L., Kimmerle G. Effects of inhaled cholinesterase inhibitors on bronchial tonus and on plasma and erythrocyte acetylcholine esterase activity in rats. Toxicology. 1987 Oct 30;46(2):177–190. doi: 10.1016/0300-483x(87)90126-0. [DOI] [PubMed] [Google Scholar]
- Small R. C., Good D. M., Dixon J. S., Kennedy I. The effects of epithelium removal on the actions of cholinomimetic drugs in opened segments and perfused tubular preparations of guinea-pig trachea. Br J Pharmacol. 1990 Jul;100(3):516–522. doi: 10.1111/j.1476-5381.1990.tb15839.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomsen T., Zendeh B., Fischer J. P., Kewitz H. In vitro effects of various cholinesterase inhibitors on acetyl- and butyrylcholinesterase of healthy volunteers. Biochem Pharmacol. 1991 Jan 1;41(1):139–141. doi: 10.1016/0006-2952(91)90022-w. [DOI] [PubMed] [Google Scholar]
- Traina M. E., Serpietri L. A. Changes in the levels and forms of rat plasma cholinesterases during chronic diisopropylphosphorofluoridate intoxication. Biochem Pharmacol. 1984 Feb 15;33(4):645–653. doi: 10.1016/0006-2952(84)90321-6. [DOI] [PubMed] [Google Scholar]