Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Apr;108(4):1077–1082. doi: 10.1111/j.1476-5381.1993.tb13508.x

Cellular mechanism of U78517F in the protection of porcine coronary artery endothelial cells from oxygen radical-induced damage.

K Maeda 1, M Kimura 1, S Hayashi 1
PMCID: PMC1908172  PMID: 8485619

Abstract

1. The aim of this study was to clarify the role of lipid peroxidation in cellular injury as assessed by lactate dehydrogenase (LDH) release from cultured coronary artery endothelial cells of the pig. Cells exposed to H2O2 at concentrations of 0.1 to 20 mM or to a xanthine and xanthine oxidase (X/XO) reaction mixture released LDH into the medium. Significant release from X/XO-treated cells took place with a delay of 2 h. 2. Superoxide dismutase (SOD), catalase or dimethylthiourea attenuated the release of LDH from X/XO-treated cells. Similarly the putative inhibitor of lipid peroxidation, U78517F attenuated the release of LDH by X/XO with an IC50 of 0.08 microM. 3. H2O2 was continuously produced by the addition of X/XO to the medium alone. However, in the presence of endothelial cells, H2O2 was eliminated at 1 h. U78517F had no effect on either process. 4. The oxygen radical-induced release of LDH was associated with malondialdehyde (MDA) formation. U78517F inhibited the formation of MDA with an IC50 of 0.27 microM. 5. Reduction of the Ca2+ concentration in the incubation medium from 1.6 mM to 0.016 mM markedly attenuated the release of LDH from endothelial cells. Nifedipine (1 microM) did not attenuate the LDH release from the cells. 6. It is likely that porcine coronary artery endothelial cells can be thus injured by oxygen radicals presumably through hydroxyl radicals formed and consequent lipid peroxidation, and that the extracellular Ca2+ concentration plays an important role in the genesis of such endothelial cell damage.

Full text

PDF
1077

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. J., Barakeh J., Laskey R., Van Breemen C. Ion channels and regulation of intracellular calcium in vascular endothelial cells. FASEB J. 1989 Oct;3(12):2389–2400. doi: 10.1096/fasebj.3.12.2477294. [DOI] [PubMed] [Google Scholar]
  2. Cederbaum A. I., Dicker E., Rubin E., Cohen G. Effect of thiourea on microsomal oxidation of alcohols and associated microsomal functions. Biochemistry. 1979 Apr 3;18(7):1187–1191. doi: 10.1021/bi00574a011. [DOI] [PubMed] [Google Scholar]
  3. Grisham M. B., Granger D. N. Neutrophil-mediated mucosal injury. Role of reactive oxygen metabolites. Dig Dis Sci. 1988 Mar;33(3 Suppl):6S–15S. doi: 10.1007/BF01538126. [DOI] [PubMed] [Google Scholar]
  4. Gutteridge J. M. Ferrous-salt-promoted damage to deoxyribose and benzoate. The increased effectiveness of hydroxyl-radical scavengers in the presence of EDTA. Biochem J. 1987 May 1;243(3):709–714. doi: 10.1042/bj2430709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hall E. D. Effects of the 21-aminosteroid U74006F on posttraumatic spinal cord ischemia in cats. J Neurosurg. 1988 Mar;68(3):462–465. doi: 10.3171/jns.1988.68.3.0462. [DOI] [PubMed] [Google Scholar]
  6. Hall E. D., Yonkers P. A. Attenuation of postischemic cerebral hypoperfusion by the 21-aminosteroid U74006F. Stroke. 1988 Mar;19(3):340–344. doi: 10.1161/01.str.19.3.340. [DOI] [PubMed] [Google Scholar]
  7. Hall E. D., Yonkers P. A., McCall J. M., Braughler J. M. Effects of the 21-aminosteroid U74006F on experimental head injury in mice. J Neurosurg. 1988 Mar;68(3):456–461. doi: 10.3171/jns.1988.68.3.0456. [DOI] [PubMed] [Google Scholar]
  8. Halliwell B., Gutteridge J. M. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys. 1986 May 1;246(2):501–514. doi: 10.1016/0003-9861(86)90305-x. [DOI] [PubMed] [Google Scholar]
  9. Harlan J. M., Levine J. D., Callahan K. S., Schwartz B. R., Harker L. A. Glutathione redox cycle protects cultured endothelial cells against lysis by extracellularly generated hydrogen peroxide. J Clin Invest. 1984 Mar;73(3):706–713. doi: 10.1172/JCI111263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kimura M., Maeda K., Hayashi S. Cytosolic calcium increase in coronary endothelial cells after H2O2 exposure and the inhibitory effect of U78517F. Br J Pharmacol. 1992 Oct;107(2):488–493. doi: 10.1111/j.1476-5381.1992.tb12772.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kontos H. A. George E. Brown memorial lecture. Oxygen radicals in cerebral vascular injury. Circ Res. 1985 Oct;57(4):508–516. doi: 10.1161/01.res.57.4.508. [DOI] [PubMed] [Google Scholar]
  12. Kotasek D., Vercellotti G. M., Ochoa A. C., Bach F. H., White J. G., Jacob H. S. Mechanism of cultured endothelial injury induced by lymphokine-activated killer cells. Cancer Res. 1988 Oct 1;48(19):5528–5532. [PubMed] [Google Scholar]
  13. Kvietys P. R., Inauen W., Bacon B. R., Grisham M. B. Xanthine oxidase-induced injury to endothelium: role of intracellular iron and hydroxyl radical. Am J Physiol. 1989 Nov;257(5 Pt 2):H1640–H1646. doi: 10.1152/ajpheart.1989.257.5.H1640. [DOI] [PubMed] [Google Scholar]
  14. Link E. M., Riley P. A. Role of hydrogen peroxide in the cytotoxicity of the xanthine/xanthine oxidase system. Biochem J. 1988 Jan 15;249(2):391–399. doi: 10.1042/bj2490391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Machlin L. J., Bendich A. Free radical tissue damage: protective role of antioxidant nutrients. FASEB J. 1987 Dec;1(6):441–445. [PubMed] [Google Scholar]
  16. Martin W. J., 2nd Neutrophils kill pulmonary endothelial cells by a hydrogen-peroxide-dependent pathway. An in vitro model of neutrophil-mediated lung injury. Am Rev Respir Dis. 1984 Aug;130(2):209–213. doi: 10.1164/arrd.1984.130.2.209. [DOI] [PubMed] [Google Scholar]
  17. Ody C., Junod A. F. Effect of variable glutathione peroxidase activity on H2O2-related cytotoxicity in cultured aortic endothelial cells. Proc Soc Exp Biol Med. 1985 Oct;180(1):103–111. doi: 10.3181/00379727-180-42150. [DOI] [PubMed] [Google Scholar]
  18. Ratych R. E., Chuknyiska R. S., Bulkley G. B. The primary localization of free radical generation after anoxia/reoxygenation in isolated endothelial cells. Surgery. 1987 Aug;102(2):122–131. [PubMed] [Google Scholar]
  19. Sacks T., Moldow C. F., Craddock P. R., Bowers T. K., Jacob H. S. Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. An in vitro model of immune vascular damage. J Clin Invest. 1978 May;61(5):1161–1167. doi: 10.1172/JCI109031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schanne F. A., Kane A. B., Young E. E., Farber J. L. Calcium dependence of toxic cell death: a final common pathway. Science. 1979 Nov 9;206(4419):700–702. doi: 10.1126/science.386513. [DOI] [PubMed] [Google Scholar]
  21. Thurman R. G., Ley H. G., Scholz R. Hepatic microsomal ethanol oxidation. Hydrogen peroxide formation and the role of catalase. Eur J Biochem. 1972 Feb;25(3):420–430. doi: 10.1111/j.1432-1033.1972.tb01711.x. [DOI] [PubMed] [Google Scholar]
  22. Vercellotti G. M., Dobson M., Schorer A. E., Moldow C. F. Endothelial cell heterogeneity: antioxidant profiles determine vulnerability to oxidant injury. Proc Soc Exp Biol Med. 1988 Feb;187(2):181–189. doi: 10.3181/00379727-187-42652. [DOI] [PubMed] [Google Scholar]
  23. Weiss S. J., Young J., LoBuglio A. F., Slivka A., Nimeh N. F. Role of hydrogen peroxide in neutrophil-mediated destruction of cultured endothelial cells. J Clin Invest. 1981 Sep;68(3):714–721. doi: 10.1172/JCI110307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Whorton A. R., Montgomery M. E., Kent R. S. Effect of hydrogen peroxide on prostaglandin production and cellular integrity in cultured porcine aortic endothelial cells. J Clin Invest. 1985 Jul;76(1):295–302. doi: 10.1172/JCI111960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Winston G. W., Harvey W., Berl L., Cederbaum A. I. The generation of hydroxyl and alkoxyl radicals from the interaction of ferrous bipyridyl with peroxides. Biochem J. 1983 Nov 15;216(2):415–421. doi: 10.1042/bj2160415. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES