Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Aug;103(4):1889–1892. doi: 10.1111/j.1476-5381.1991.tb12347.x

Characterization of a novel, hydrophilic dihydropyridine, NKY-722, as a Ca2+ antagonist in bovine cultured adrenal chromaffin cells.

T Ohue 1, K Lee 1, K Koshimura 1, S Miwa 1
PMCID: PMC1908182  PMID: 1912977

Abstract

1. To characterize NKY-722, a novel hydrophilic dihydropyridine derivative, as a Ca2+ antagonist, we examined its effects on 45Ca2+ influx, intracellular free Ca2+ concentrations [( Ca2+]i), and release of noradrenaline and adrenaline in bovine cultured adrenal chromaffin cells. 2. NKY-722 had little effect on basal 45Ca2+ influx into the resting cells, but inhibited high K+ (35.9 mM)-evoked 45Ca2+ influx in a concentration-dependent manner with an IC50 value of 5.2 nM. 3. NKY-722 inhibited high K(+)-evoked increases in [Ca2+]i in a concentration-dependent manner without effect on the resting [Ca2+]i. 4. NKY-722 had little effect on basal release of noradrenaline and adrenaline but inhibited high K(+)-evoked release of noradrenaline and adrenaline in a concentration-dependent manner with IC50 values of 5.0 nM and 4.8 nM, respectively. 5. Nicardipine, a prototype of NKY-722, also inhibited high K(+)-evoked 45Ca2+ influx and release of noradrenaline and adrenaline in a concentration-dependent manner: the IC50 value for high K(+)-evoked 45Ca2+ influx was 51 nM, and the values for high K(+)-evoked release of noradrenaline and adrenaline were 52 nM and 50 nM, respectively. 6. These results show that NKY-722 is a hydrophilic Ca2+ antagonist ten times more potent than nicardipine.

Full text

PDF
1889

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Artalejo C. R., García A. G., Aunis D. Chromaffin cell calcium channel kinetics measured isotopically through fast calcium, strontium, and barium fluxes. J Biol Chem. 1987 Jan 15;262(2):915–926. [PubMed] [Google Scholar]
  2. Ceña V., Nicolas G. P., Sanchez-Garcia P., Kirpekar S. M., Garcia A. G. Pharmacological dissection of receptor-associated and voltage-sensitive ionic channels involved in catecholamine release. Neuroscience. 1983 Dec;10(4):1455–1462. doi: 10.1016/0306-4522(83)90126-4. [DOI] [PubMed] [Google Scholar]
  3. Fenwick E. M., Fajdiga P. B., Howe N. B., Livett B. G. Functional and morphological characterization of isolated bovine adrenal medullary cells. J Cell Biol. 1978 Jan;76(1):12–30. doi: 10.1083/jcb.76.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  5. Imagawa J., Satoh K., Taira N. Coronary vasodilator and cardiac effects of NKY-722, a novel hydrophilic 1,4-dihydropyridine derivative, in the blood-perfused dog heart. Cardiovasc Drugs Ther. 1989 Mar;3(1):81–90. doi: 10.1007/BF01881532. [DOI] [PubMed] [Google Scholar]
  6. Lee K., Miwa S., Fujiwara M., Magaribuchi T., Fujiwara M. Differential effects of hypoxia on the turnover of norepinephrine and epinephrine in the heart, adrenal gland, submaxillary gland and stomach. J Pharmacol Exp Ther. 1987 Mar;240(3):954–958. [PubMed] [Google Scholar]
  7. Lee K., Miwa S., Koshimura K., Hasegawa H., Hamahata K., Fujiwara M. Effects of hypoxia on the catecholamine release, Ca2+ uptake, and cytosolic free Ca2+ concentration in cultured bovine adrenal chromaffin cells. J Neurochem. 1990 Oct;55(4):1131–1137. doi: 10.1111/j.1471-4159.1990.tb03115.x. [DOI] [PubMed] [Google Scholar]
  8. Mikami A., Imoto K., Tanabe T., Niidome T., Mori Y., Takeshima H., Narumiya S., Numa S. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature. 1989 Jul 20;340(6230):230–233. doi: 10.1038/340230a0. [DOI] [PubMed] [Google Scholar]
  9. Miwa S., Fujiwara M., Inoue M., Fujiwara M. Effects of hypoxia on the activities of noradrenergic and dopaminergic neurons in the rat brain. J Neurochem. 1986 Jul;47(1):63–69. doi: 10.1111/j.1471-4159.1986.tb02831.x. [DOI] [PubMed] [Google Scholar]
  10. Osumi S., Morishita S., Wada K., Usui H., Kanda M., Matsui H., Kakeya N. Antihypertensive effect of NKY-722, a new water-soluble 1,4-dihydropyridine derivative, on conscious spontaneously hypertensive rats. Tohoku J Exp Med. 1988 Jun;155(2):205–206. doi: 10.1620/tjem.155.205. [DOI] [PubMed] [Google Scholar]
  11. Tanabe T., Takeshima H., Mikami A., Flockerzi V., Takahashi H., Kangawa K., Kojima M., Matsuo H., Hirose T., Numa S. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature. 1987 Jul 23;328(6128):313–318. doi: 10.1038/328313a0. [DOI] [PubMed] [Google Scholar]
  12. Vaghy P. L., Striessnig J., Miwa K., Knaus H. G., Itagaki K., McKenna E., Glossmann H., Schwartz A. Identification of a novel 1,4-dihydropyridine- and phenylalkylamine-binding polypeptide in calcium channel preparations. J Biol Chem. 1987 Oct 15;262(29):14337–14342. [PubMed] [Google Scholar]
  13. Waymire J. C., Bennett W. F., Boehme R., Hankins L., Gilmer-Waymire K., Haycock J. W. Bovine adrenal chromaffin cells: high-yield purification and viability in suspension culture. J Neurosci Methods. 1983 Apr;7(4):329–351. doi: 10.1016/0165-0270(83)90026-2. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES