Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Aug;103(4):1909–1916. doi: 10.1111/j.1476-5381.1991.tb12351.x

Thrombin-activated platelets promote leukotriene B4 synthesis in polymorphonuclear leucocytes stimulated by physiological agonists.

R Palmantier 1, P Borgeat 1
PMCID: PMC1908189  PMID: 1655146

Abstract

1. The addition of 2 x 10(8) human platelets to 8 x 10(6) polymorphonuclear leucocytes (PMNL) incubated in presence of 2.5 u ml-1 thrombin and 0.1 microM N-formyl-Met-Leu-Phe (FMLP) (or C5a or PAF) led to enhancement of leukotriene B4 (LTB4) synthesis by the PMNL (measured by h.p.l.c. as 20-hydroxy- and 20-carboxy-LTB4) from 4 +/- 1 pmol (in absence of platelets) to 26 +/- 4 pmol (mean +/- s.e.mean, n = 9). Platelets and thrombin were both essential for the enhancement of LTB4 synthesis. 2. Platelets also caused enhancement of LTB4 synthesis from (30 +/- 12 to 134 +/- 25 pmol, n = 6) when PMNL pretreated with granulocyte-macrophage colony-stimulating factor were used in similar experiments. 3. Enhancement of LTB4 synthesis was also observed (from 5 +/- 1.5 to 26.5 +/- 5 pmol, n = 9) when the supernatants of thrombin-activated platelet suspensions were added to FMLP-stimulated PMNL. 4. Supernatants of platelet suspensions activated by thrombin in presence of cyclo-oxygenase and 12-lipoxygenase inhibitors led to greater enhancement (from 5 +/- 3 to 153.5 +/- 27.5 pmol, n = 3) of LTB4 synthesis by FMLP-stimulated PMNL, suggesting that arachidonic acid itself, rather than its metabolites was responsible for the effects of platelets. 5. Addition of arachidonic acid to FMLP-stimulated PMNL at a concentration comparable to that measured in thrombin-activated platelet supernatants (0.2 +/- 0.025 microM, n = 6) mimicked the effect of platelets or platelet supernatants on LTB4 synthesis in FMLP-activated PMNL.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1909

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borgeat P. Biochemistry of the lipoxygenase pathways in neutrophils. Can J Physiol Pharmacol. 1989 Aug;67(8):936–942. doi: 10.1139/y89-147. [DOI] [PubMed] [Google Scholar]
  2. Borgeat P., Fruteau de Laclos B., Picard S., Drapeau J., Vallerand P., Corey E. J. Studies on the mechanism of formation of the 5S, 12S-dihydroxy-6,8,10,14(E,Z,E,Z)-icosatetraenoic acid in leukocytes. Prostaglandins. 1982 May;23(5):713–724. doi: 10.1016/s0090-6980(82)80009-9. [DOI] [PubMed] [Google Scholar]
  3. Borgeat P., Picard S. 19-Hydroxyprostaglandin B2 as an internal standard for on-line extraction-high-performance liquid chromatography analysis of lipoxygenase products. Anal Biochem. 1988 Jun;171(2):283–289. doi: 10.1016/0003-2697(88)90487-3. [DOI] [PubMed] [Google Scholar]
  4. Borgeat P., Samuelsson B. Arachidonic acid metabolism in polymorphonuclear leukocytes: effects of ionophore A23187. Proc Natl Acad Sci U S A. 1979 May;76(5):2148–2152. doi: 10.1073/pnas.76.5.2148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Broekman M. J., Eiroa A. M., Marcus A. J. Albumin redirects platelet eicosanoid metabolism toward 12(S)-hydroxyeicosatetraenoic acid. J Lipid Res. 1989 Dec;30(12):1925–1932. [PubMed] [Google Scholar]
  6. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  7. Camussi G., Tetta C., Bussolino F., Baglioni C. Tumor necrosis factor stimulates human neutrophils to release leukotriene B4 and platelet-activating factor. Induction of phospholipase A2 and acetyl-CoA:1-alkyl-sn-glycero-3-phosphocholine O2-acetyltransferase activity and inhibition by antiproteinase. Eur J Biochem. 1989 Jul 1;182(3):661–666. doi: 10.1111/j.1432-1033.1989.tb14876.x. [DOI] [PubMed] [Google Scholar]
  8. Claesson H. E., Lundberg U., Malmsten C. Serum-coated zymosan stimulates the synthesis of leukotriene B4 in human polymorphonuclear leukocytes. Inhibition by cyclic AMP. Biochem Biophys Res Commun. 1981 Apr 30;99(4):1230–1237. doi: 10.1016/0006-291x(81)90751-8. [DOI] [PubMed] [Google Scholar]
  9. Clancy R. M., Dahinden C. A., Hugli T. E. Arachidonate metabolism by human polymorphonuclear leukocytes stimulated by N-formyl-Met-Leu-Phe or complement component C5a is independent of phospholipase activation. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7200–7204. doi: 10.1073/pnas.80.23.7200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Coëffier E., Delautier D., Le Couedic J. P., Chignard M., Denizot Y., Benveniste J. Cooperation between platelets and neutrophils for paf-acether (platelet-activating factor) formation. J Leukoc Biol. 1990 Mar;47(3):234–243. doi: 10.1002/jlb.47.3.234. [DOI] [PubMed] [Google Scholar]
  11. Dahinden C. A., Zingg J., Maly F. E., de Weck A. L. Leukotriene production in human neutrophils primed by recombinant human granulocyte/macrophage colony-stimulating factor and stimulated with the complement component C5A and FMLP as second signals. J Exp Med. 1988 Apr 1;167(4):1281–1295. doi: 10.1084/jem.167.4.1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Del Maschio A., Evangelista V., Rajtar G., Chen Z. M., Cerletti C., De Gaetano G. Platelet activation by polymorphonuclear leukocytes exposed to chemotactic agents. Am J Physiol. 1990 Mar;258(3 Pt 2):H870–H879. doi: 10.1152/ajpheart.1990.258.3.H870. [DOI] [PubMed] [Google Scholar]
  13. Del Maschio A., Maclouf J., Corvazier E., Grange M. J., Borgeat P. Activated platelets stimulate human neutrophils functions. Nouv Rev Fr Hematol. 1985;27(4):275–278. [PubMed] [Google Scholar]
  14. Deuel T. F., Senior R. M., Chang D., Griffin G. L., Heinrikson R. L., Kaiser E. T. Platelet factor 4 is chemotactic for neutrophils and monocytes. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4584–4587. doi: 10.1073/pnas.78.7.4584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Deuel T. F., Senior R. M., Huang J. S., Griffin G. L. Chemotaxis of monocytes and neutrophils to platelet-derived growth factor. J Clin Invest. 1982 Apr;69(4):1046–1049. doi: 10.1172/JCI110509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. DiPersio J. F., Naccache P. H., Borgeat P., Gasson J. C., Nguyen M. H., McColl S. R. Characterization of the priming effects of human granulocyte-macrophage colony-stimulating factor on human neutrophil leukotriene synthesis. Prostaglandins. 1988 Nov;36(5):673–691. doi: 10.1016/0090-6980(88)90013-5. [DOI] [PubMed] [Google Scholar]
  17. Ferrer-Lopez P., Renesto P., Schattner M., Bassot S., Laurent P., Chignard M. Activation of human platelets by C5a-stimulated neutrophils: a role for cathepsin G. Am J Physiol. 1990 Jun;258(6 Pt 1):C1100–C1107. doi: 10.1152/ajpcell.1990.258.6.C1100. [DOI] [PubMed] [Google Scholar]
  18. Ford-Hutchinson A. W. Leukotriene B4 in inflammation. Crit Rev Immunol. 1990;10(1):1–12. [PubMed] [Google Scholar]
  19. Hamburger S. A., McEver R. P. GMP-140 mediates adhesion of stimulated platelets to neutrophils. Blood. 1990 Feb 1;75(3):550–554. [PubMed] [Google Scholar]
  20. Jungi T. W., Spycher M. O., Nydegger U. E., Barandun S. Platelet-leukocyte interaction: selective binding of thrombin-stimulated platelets to human monocytes, polymorphonuclear leukocytes, and related cell lines. Blood. 1986 Mar;67(3):629–636. [PubMed] [Google Scholar]
  21. Kaufman S. E., DiPersio J. F., Gasson J. C. Effects of human GM-CSF on neutrophil degranulation in vitro. Exp Hematol. 1989 Aug;17(7):800–804. [PubMed] [Google Scholar]
  22. Lagarde M., Bryon P. A., Guichardant M., Dechavanne M. A simple and efficient method for platelet isolation from their plasma. Thromb Res. 1980 Feb 1;17(3-4):581–588. doi: 10.1016/0049-3848(80)90098-5. [DOI] [PubMed] [Google Scholar]
  23. Larsen E., Celi A., Gilbert G. E., Furie B. C., Erban J. K., Bonfanti R., Wagner D. D., Furie B. PADGEM protein: a receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell. 1989 Oct 20;59(2):305–312. doi: 10.1016/0092-8674(89)90292-4. [DOI] [PubMed] [Google Scholar]
  24. Lin A. H., Morton D. R., Gorman R. R. Acetyl glyceryl ether phosphorylcholine stimulates leukotriene B4 synthesis in human polymorphonuclear leukocytes. J Clin Invest. 1982 Nov;70(5):1058–1065. doi: 10.1172/JCI110693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lindgren J. A., Hansson G., Samuelsson B. Formation of novel hydroxylated eicosatetraenoic acids in preparations of human polymorphonuclear leukocytes. FEBS Lett. 1981 Jun 15;128(2):329–335. doi: 10.1016/0014-5793(81)80110-x. [DOI] [PubMed] [Google Scholar]
  26. Lopez A. F., Williamson D. J., Gamble J. R., Begley C. G., Harlan J. M., Klebanoff S. J., Waltersdorph A., Wong G., Clark S. C., Vadas M. A. Recombinant human granulocyte-macrophage colony-stimulating factor stimulates in vitro mature human neutrophil and eosinophil function, surface receptor expression, and survival. J Clin Invest. 1986 Nov;78(5):1220–1228. doi: 10.1172/JCI112705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Maas R. L., Brash A. R. Evidence for a lipoxygenase mechanism in the biosynthesis of epoxide and dihydroxy leukotrienes from 15(S)-hydroperoxyicosatetraenoic acid by human platelets and porcine leukocytes. Proc Natl Acad Sci U S A. 1983 May;80(10):2884–2888. doi: 10.1073/pnas.80.10.2884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Maclouf J., Fitzpatrick F. A., Murphy R. C. Transcellular biosynthesis of eicosanoids. Pharmacol Res. 1989 Jan-Feb;21(1):1–7. doi: 10.1016/1043-6618(89)90115-1. [DOI] [PubMed] [Google Scholar]
  29. Maclouf J., de Laclos B. F., Borgeat P. Stimulation of leukotriene biosynthesis in human blood leukocytes by platelet-derived 12-hydroperoxy-icosatetraenoic acid. Proc Natl Acad Sci U S A. 1982 Oct;79(19):6042–6046. doi: 10.1073/pnas.79.19.6042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Marcus A. J., Broekman M. J., Safier L. B., Ullman H. L., Islam N., Sherhan C. N., Rutherford L. E., Korchak H. M., Weissmann G. Formation of leukotrienes and other hydroxy acids during platelet-neutrophil interactions in vitro. Biochem Biophys Res Commun. 1982 Nov 16;109(1):130–137. doi: 10.1016/0006-291x(82)91575-3. [DOI] [PubMed] [Google Scholar]
  31. Marcus A. J., Safier L. B., Ullman H. L., Broekman M. J., Islam N., Oglesby T. D., Gorman R. R. 12S,20-dihydroxyicosatetraenoic acid: a new icosanoid synthesized by neutrophils from 12S-hydroxyicosatetraenoic acid produced by thrombin- or collagen-stimulated platelets. Proc Natl Acad Sci U S A. 1984 Feb;81(3):903–907. doi: 10.1073/pnas.81.3.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Marcus A. J., Safier L. B., Ullman H. L., Islam N., Broekman M. J., von Schacky C. Studies on the mechanism of omega-hydroxylation of platelet 12-hydroxyeicosatetraenoic acid (12-HETE) by unstimulated neutrophils. J Clin Invest. 1987 Jan;79(1):179–187. doi: 10.1172/JCI112781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Miller D. K., Gillard J. W., Vickers P. J., Sadowski S., Léveillé C., Mancini J. A., Charleson P., Dixon R. A., Ford-Hutchinson A. W., Fortin R. Identification and isolation of a membrane protein necessary for leukotriene production. Nature. 1990 Jan 18;343(6255):278–281. doi: 10.1038/343278a0. [DOI] [PubMed] [Google Scholar]
  34. Powell W. S. Properties of leukotriene B4 20-hydroxylase from polymorphonuclear leukocytes. J Biol Chem. 1984 Mar 10;259(5):3082–3089. [PubMed] [Google Scholar]
  35. Purdon A. D., Rao A. K. Interaction of albumin, arachidonic acid and prostanoids in platelets. Prostaglandins Leukot Essent Fatty Acids. 1989 Mar;35(4):213–218. doi: 10.1016/0952-3278(89)90004-5. [DOI] [PubMed] [Google Scholar]
  36. Rouzer C. A., Samuelsson B. Reversible, calcium-dependent membrane association of human leukocyte 5-lipoxygenase. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7393–7397. doi: 10.1073/pnas.84.21.7393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Salari H., Braquet P., Borgeat P. Comparative effects of indomethacin, acetylenic acids, 15-HETE, nordihydroguaiaretic acid and BW755C on the metabolism of arachidonic acid in human leukocytes and platelets. Prostaglandins Leukot Med. 1984 Jan;13(1):53–60. doi: 10.1016/0262-1746(84)90102-1. [DOI] [PubMed] [Google Scholar]
  38. Salari H., Braquet P., Naccache P., Borgeat P. Characterization of effect of N-formyl-methionyl-leucyl-phenylalanine on leukotriene synthesis in human polymorphonuclear leukocytes. Inflammation. 1985 Jun;9(2):127–138. doi: 10.1007/BF00917585. [DOI] [PubMed] [Google Scholar]
  39. Serhan C. N., Sheppard K. A. Lipoxin formation during human neutrophil-platelet interactions. Evidence for the transformation of leukotriene A4 by platelet 12-lipoxygenase in vitro. J Clin Invest. 1990 Mar;85(3):772–780. doi: 10.1172/JCI114503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Silberstein D. S., Owen W. F., Gasson J. C., DiPersio J. F., Golde D. W., Bina J. C., Soberman R., Austen K. F., David J. R. Enhancement of human eosinophil cytotoxicity and leukotriene synthesis by biosynthetic (recombinant) granulocyte-macrophage colony-stimulating factor. J Immunol. 1986 Nov 15;137(10):3290–3294. [PubMed] [Google Scholar]
  41. Smith J. B., Dangelmaier C., Mauco G. Measurement of arachidonic acid liberation in thrombin-stimulated human platelets. Use of agents that inhibit both the cyclooxygenase and lipoxygenase enzymes. Biochim Biophys Acta. 1985 Jul 9;835(2):344–351. doi: 10.1016/0005-2760(85)90290-5. [DOI] [PubMed] [Google Scholar]
  42. Weisbart R. H., Kwan L., Golde D. W., Gasson J. C. Human GM-CSF primes neutrophils for enhanced oxidative metabolism in response to the major physiological chemoattractants. Blood. 1987 Jan;69(1):18–21. [PubMed] [Google Scholar]
  43. Wong P. Y., Westlund P., Hamberg M., Granström E., Chao P. H., Samuelsson B. 15-Lipoxygenase in human platelets. J Biol Chem. 1985 Aug 5;260(16):9162–9165. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES