Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Aug;103(4):2021–2029. doi: 10.1111/j.1476-5381.1991.tb12370.x

Barbiturates inhibit ATP-K+ channels and voltage-activated currents in CRI-G1 insulin-secreting cells.

R Z Kozlowski 1, M L Ashford 1
PMCID: PMC1908196  PMID: 1912991

Abstract

1. Patch-clamp recording techniques were used to examine the effects of barbiturates upon the ATP-K+ channel, and voltage-activated channels present in the plasma membrane of CRI-G1 insulin-secreting cells. 2. Thiopentone inhibited ATP-K+ channel activity when applied to cell-attached patches or the intracellular or extracellular surface of cell-free patches. Secobarbitone and pentobarbitone were also effective inhibitors of ATP-K+ channels in cell-free patches, whereas phenobarbitone was ineffective. 3. The diabetogenic agent, alloxan, which is structurally related to the barbiturates also produced an inhibition of ATP-K+ channel activity in outside-out patches. 4. Whole-cell ATP-K+ currents were used to quantify the effects of the barbiturates: concentration-inhibition curves for thiopentone, secobarbitone and pentobarbitone resulted in IC50 values of 62, 250 and 360 microM respectively. Phenobarbitone at a concentration of 1 mM was virtually ineffective. 5. Calculation of the apparent membrane concentrations for these drugs indicate that for a given degree of ATP-K+ channel inhibition a similar concentration of each barbiturate is present in the membrane. This suggests that hydrophobicity plays a primary role in their mechanism of action. The pH-dependence and additive nature of barbiturate block also indicates a membrane site of action. 6. Thiopentone, (100 microM) was also found to inhibit differentially voltage-activated whole-cell currents. The relative potency of thiopentone at this concentration was 0.64, 0.38 and 0.12 for inhibiting Ca2+, K+ and Na+ currents respectively when compared with its ability to inhibit the ATP-K+ channel.

Full text

PDF
2021

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashcroft F. M., Ashcroft S. J., Harrison D. E. Properties of single potassium channels modulated by glucose in rat pancreatic beta-cells. J Physiol. 1988 Jun;400:501–527. doi: 10.1113/jphysiol.1988.sp017134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashcroft F. M., Rorsman P. Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol. 1989;54(2):87–143. doi: 10.1016/0079-6107(89)90013-8. [DOI] [PubMed] [Google Scholar]
  3. Aynsley-Green A., Biebuyck J. F., Alberti K. G. Anaesthesia and insulin secretion: the effects of diethyl ether, halothane, pentobarbitone sodium and ketamine hydrochloride on intravenous glucose tolerance and insulin secretion in the rat. Diabetologia. 1973 Aug;9(4):274–281. doi: 10.1007/BF01221854. [DOI] [PubMed] [Google Scholar]
  4. Blaustein M. P. Barbiturates block sodium and potassium conductance increases in voltage-clamped lobster axons. J Gen Physiol. 1968 Mar;51(3):293–307. doi: 10.1085/jgp.51.3.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blaustein M. P., Ector A. C. Barbiturate inhibition of calcium uptake by depolarized nerve terminals in vitro. Mol Pharmacol. 1975 May;11(3):369–378. [PubMed] [Google Scholar]
  6. Carrington C. A., Rubery E. D., Pearson E. C., Hales C. N. Five new insulin-producing cell lines with differing secretory properties. J Endocrinol. 1986 May;109(2):193–200. doi: 10.1677/joe.0.1090193. [DOI] [PubMed] [Google Scholar]
  7. Dean P. M., Matthews E. K. The bioelectrical properties of pancreatic islet cells: effects of diabetogenic agents. Diabetologia. 1972 Jul;8(3):173–178. doi: 10.1007/BF01212257. [DOI] [PubMed] [Google Scholar]
  8. Dunne M. J., Illot M. C., Peterson O. H. Interaction of diazoxide, tolbutamide and ATP4- on nucleotide-dependent K+ channels in an insulin-secreting cell line. J Membr Biol. 1987;99(3):215–224. doi: 10.1007/BF01995702. [DOI] [PubMed] [Google Scholar]
  9. Goldring J. M., Blaustein M. P. Effect of pentobarbital on Na and Ca action potentials in an invertebrate neuron. Brain Res. 1982 May 27;240(2):273–283. doi: 10.1016/0006-8993(82)90222-0. [DOI] [PubMed] [Google Scholar]
  10. Gonçalves A. A., Dias O., Langone F., Reis L. C., Boschero A. C. Thiopental inhibits K+ permeability of rat and mouse pancreatic beta-cells. Eur J Pharmacol. 1986 Jun 5;125(1):119–125. doi: 10.1016/0014-2999(86)90090-7. [DOI] [PubMed] [Google Scholar]
  11. Gross R. A., Macdonald R. L. Differential actions of pentobarbitone on calcium current components of mouse sensory neurones in culture. J Physiol. 1988 Nov;405:187–203. doi: 10.1113/jphysiol.1988.sp017328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  13. Harrison N. L., Simmonds M. A. Two distinct interactions of barbiturates and chlormethiazole with the GABAA receptor complex in rat cuneate nucleus in vitro. Br J Pharmacol. 1983 Oct;80(2):387–394. doi: 10.1111/j.1476-5381.1983.tb10045.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heinemeyer G. Clinical pharmacokinetic considerations in the treatment of increased intracranial pressure. Clin Pharmacokinet. 1987 Jul;13(1):1–25. doi: 10.2165/00003088-198713010-00001. [DOI] [PubMed] [Google Scholar]
  15. Hellman B. Calcium and pancreatic beta-cell function. I. Stimulatory effects of pentobarbital on insulin release. Biochim Biophys Acta. 1977 May 26;497(3):766–774. doi: 10.1016/0304-4165(77)90297-5. [DOI] [PubMed] [Google Scholar]
  16. Heyer E. J., Macdonald R. L. Barbiturate reduction of calcium-dependent action potentials: correlation with anesthetic action. Brain Res. 1982 Mar 18;236(1):157–171. doi: 10.1016/0006-8993(82)90042-7. [DOI] [PubMed] [Google Scholar]
  17. Ikemoto Y., Mitsuiye T., Ishizuka S. Reduction of the voltage-dependent calcium current in Aplysia neurons by pentobarbital. Cell Mol Neurobiol. 1986 Sep;6(3):293–305. doi: 10.1007/BF00711115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kozlowski R. Z., Ashford M. L. ATP-sensitive K(+)-channel run-down is Mg2+ dependent. Proc R Soc Lond B Biol Sci. 1990 Jun 22;240(1298):397–410. doi: 10.1098/rspb.1990.0044. [DOI] [PubMed] [Google Scholar]
  19. Kozlowski R. Z., Hales C. N., Ashford M. L. Dual effects of diazoxide on ATP-K+ currents recorded from an insulin-secreting cell line. Br J Pharmacol. 1989 Aug;97(4):1039–1050. doi: 10.1111/j.1476-5381.1989.tb12560.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lee A. G. Model for action of local anaesthetics. Nature. 1976 Aug 12;262(5569):545–548. doi: 10.1038/262545a0. [DOI] [PubMed] [Google Scholar]
  21. Lohse M. J., Klotz K. N., Jakobs K. H., Schwabe U. Barbiturates are selective antagonists at A1 adenosine receptors. J Neurochem. 1985 Dec;45(6):1761–1770. doi: 10.1111/j.1471-4159.1985.tb10532.x. [DOI] [PubMed] [Google Scholar]
  22. Mennear J. H., Schonwalder C., Yau E. T. The comparative effects of barbituric acid phenobarbital on blood glucose and insulin secretion in mice. Diabetologia. 1976 Jul;12(3):263–267. doi: 10.1007/BF00422094. [DOI] [PubMed] [Google Scholar]
  23. Narahashi T., Frazier D. T., Deguchi T., Cleaves C. A., Ernau M. C. The active form of pentobarbital in squid giant axons. J Pharmacol Exp Ther. 1971 Apr;177(1):25–33. [PubMed] [Google Scholar]
  24. Nishi K., Oyama Y. Accelerating effects of pentobarbitone on the inactivation process of the calcium current in Helix neurones. Br J Pharmacol. 1983 Jul;79(3):645–654. doi: 10.1111/j.1476-5381.1983.tb10001.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Novak R. F., Swift T. J. Barbiturate interaction with phosphatidylcholine. Proc Natl Acad Sci U S A. 1972 Mar;69(3):640–642. doi: 10.1073/pnas.69.3.640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Panten U., Christians J., von Kriegstein E., Poser W., Hasselblatt A. Effect of carbohydrates upon fluorescence of reduced pyridine nucleotides from perifused isolated pancreatic islets. Diabetologia. 1973 Dec;9(6):477–482. doi: 10.1007/BF00461692. [DOI] [PubMed] [Google Scholar]
  27. Renauld A., Sverdlik R. C. Pentobarbital anaesthesia. Effects on blood sugar, serum immunoreactive insulin and free fatty acid responses to glucose. Experientia. 1975 Apr 15;31(4):474–475. doi: 10.1007/BF02026389. [DOI] [PubMed] [Google Scholar]
  28. Rerup C. C. Drugs producing diabetes through damage of the insulin secreting cells. Pharmacol Rev. 1970 Dec;22(4):485–518. [PubMed] [Google Scholar]
  29. Richards C. D., Martin K., Gregory S., Keightley C. A., Hesketh T. R., Smith G. A., Warren G. B., Metcalfe J. C. Degenerate perturbations of protein structure as the mechanism of anaesthetic action. Nature. 1978 Dec 21;276(5690):775–779. doi: 10.1038/276775a0. [DOI] [PubMed] [Google Scholar]
  30. Rorsman P., Trube G. Glucose dependent K+-channels in pancreatic beta-cells are regulated by intracellular ATP. Pflugers Arch. 1985 Dec;405(4):305–309. doi: 10.1007/BF00595682. [DOI] [PubMed] [Google Scholar]
  31. Sevcik C. Differences between the actions of thiopental and pentobarbital in squid giant axons. J Pharmacol Exp Ther. 1980 Sep;214(3):657–663. [PubMed] [Google Scholar]
  32. Smith P. A., Rorsman P., Ashcroft F. M. Modulation of dihydropyridine-sensitive Ca2+ channels by glucose metabolism in mouse pancreatic beta-cells. Nature. 1989 Nov 30;342(6249):550–553. doi: 10.1038/342550a0. [DOI] [PubMed] [Google Scholar]
  33. Sturgess N. C., Ashford M. L., Carrington C. A., Hales C. N. Single channel recordings of potassium currents in an insulin-secreting cell line. J Endocrinol. 1986 May;109(2):201–207. doi: 10.1677/joe.0.1090201. [DOI] [PubMed] [Google Scholar]
  34. Sturgess N. C., Ashford M. L., Cook D. L., Hales C. N. The sulphonylurea receptor may be an ATP-sensitive potassium channel. Lancet. 1985 Aug 31;2(8453):474–475. doi: 10.1016/s0140-6736(85)90403-9. [DOI] [PubMed] [Google Scholar]
  35. Sturgess N. C., Kozlowski R. Z., Carrington C. A., Hales C. N., Ashford M. L. Effects of sulphonylureas and diazoxide on insulin secretion and nucleotide-sensitive channels in an insulin-secreting cell line. Br J Pharmacol. 1988 Sep;95(1):83–94. doi: 10.1111/j.1476-5381.1988.tb16551.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Treherne J. M., Young J. M. [3H]-(+)-N-methyl-4-methyldiphenhydramine, a quaternary radioligand for the histamine H1-receptor. Br J Pharmacol. 1988 Jul;94(3):797–810. doi: 10.1111/j.1476-5381.1988.tb11591.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Trube G., Rorsman P., Ohno-Shosaku T. Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic beta-cells. Pflugers Arch. 1986 Nov;407(5):493–499. doi: 10.1007/BF00657506. [DOI] [PubMed] [Google Scholar]
  38. Weik R., Neumcke B. ATP-sensitive potassium channels in adult mouse skeletal muscle: characterization of the ATP-binding site. J Membr Biol. 1989 Sep;110(3):217–226. doi: 10.1007/BF01869152. [DOI] [PubMed] [Google Scholar]
  39. Zbicz K. L., Wilson W. A. Barbiturate enhancement of spike frequency adaptation in Aplysia giant neurons. J Pharmacol Exp Ther. 1981 Apr;217(1):222–227. [PubMed] [Google Scholar]
  40. Zünkler B. J., Trube G., Panten U. How do sulfonylureas approach their receptor in the B-cell plasma membrane? Naunyn Schmiedebergs Arch Pharmacol. 1989 Sep;340(3):328–332. doi: 10.1007/BF00168518. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES