Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Aug;103(4):1917–1922. doi: 10.1111/j.1476-5381.1991.tb12352.x

Role of the sigma receptor in the inhibition of [3H]-noradrenaline uptake in brain synaptosomes and adrenal chromaffin cells.

C Rogers 1, S Lemaire 1
PMCID: PMC1908209  PMID: 1655147

Abstract

1. Rat brain synaptosomes and cultured bovine adrenal chromaffin cells were used to monitor the inhibitory effects of phencyclidine (PCP) and sigma (sigma)-receptor ligands on the uptake of [3H]-noradrenaline ([3H]-NA). 2. A Na(+)-dependent high affinity uptake was observed in synaptosomes (30 degrees C) and chromaffin cells (37 degrees C) with Km of 0.22 and 0.56 microM and Vmax of 2.5 pmol min-1 mg-1 protein and 0.7 pmol min-1 per 10(6) cells, respectively. 3. PCP and haloperidol inhibited the high affinity uptake with IC50 of 0.17 and 0.42 microM, respectively in synaptosomes and 0.24 and 0.47 microM, respectively in adrenal chromaffin cells. 4. A close correlation (r = 0.96) was established between the ability of various PCP and sigma-receptor ligands to inhibit [3H]-NA uptake in both systems: PCP greater than TCP greater than haloperidol greater than 3-(+)-PPP greater than MK-801 greater than or equal to (-)-butaclamol greater than (+)-SKF-10047 greater than DTG. Spiperone and opioid receptor ligands were ineffective at 20 microM. 5. These results indicate that the central and peripheral inhibitory effects of PCP and sigma-receptor ligands on [3H]-NA uptake involves a receptor (sigma 1-like) which is distinct from that (PCP2) recognized for the inhibition of [3H]-dopamine uptake by PCP.

Full text

PDF
1917

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aanonsen L. M., Seybold V. S. Phencyclidine and sigma receptors in rat spinal cord: binding characterization and quantitative autoradiography. Synapse. 1989;4(1):1–10. doi: 10.1002/syn.890040102. [DOI] [PubMed] [Google Scholar]
  2. Allen R. M., Young S. J. Phencyclidine-induced psychosis. Am J Psychiatry. 1978 Sep;135(9):1081–1084. doi: 10.1176/ajp.135.9.1081. [DOI] [PubMed] [Google Scholar]
  3. Banerjee D. K., Lutz R. A., Levine M. A., Rodbard D., Pollard H. B. Uptake of norepinephrine and related catecholamines by cultured chromaffin cells: characterization of cocaine-sensitive and -insensitive plasma membrane transport sites. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1749–1753. doi: 10.1073/pnas.84.7.1749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beart P. M., O'Shea R. D., Manallack D. T. Regulation of sigma-receptors: high- and low-affinity agonist states, GTP shifts, and up-regulation by rimcazole and 1,3-Di(2-tolyl)guanidine. J Neurochem. 1989 Sep;53(3):779–788. doi: 10.1111/j.1471-4159.1989.tb11773.x. [DOI] [PubMed] [Google Scholar]
  5. Bowen W. D., Hellewell S. B., McGarry K. A. Evidence for a multi-site model of the rat brain sigma receptor. Eur J Pharmacol. 1989 Apr 25;163(2-3):309–318. doi: 10.1016/0014-2999(89)90200-8. [DOI] [PubMed] [Google Scholar]
  6. Bowyer J. F., Spuhler K. P., Weiner N. Effects of phencyclidine, amphetamine and related compounds on dopamine release from and uptake into striatal synaptosomes. J Pharmacol Exp Ther. 1984 Jun;229(3):671–680. [PubMed] [Google Scholar]
  7. Drejer J., Honoré T. Phencyclidine analogues inhibit NMDA-stimulated [3H]GABA release from cultured cortex neurons. Eur J Pharmacol. 1987 Nov 10;143(2):287–290. doi: 10.1016/0014-2999(87)90546-2. [DOI] [PubMed] [Google Scholar]
  8. Fenwick E. M., Fajdiga P. B., Howe N. B., Livett B. G. Functional and morphological characterization of isolated bovine adrenal medullary cells. J Cell Biol. 1978 Jan;76(1):12–30. doi: 10.1083/jcb.76.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Foster A. C., Fagg G. E. Neurobiology. Taking apart NMDA receptors. Nature. 1987 Oct 1;329(6138):395–396. doi: 10.1038/329395a0. [DOI] [PubMed] [Google Scholar]
  10. Goldman M. E., Jacobson A. E., Rice K. C., Paul S. M. Differentiation of [3H]phencyclidine and (+)-[3H]SKF-10,047 binding sites in rat cerebral cortex. FEBS Lett. 1985 Oct 14;190(2):333–336. doi: 10.1016/0014-5793(85)81313-2. [DOI] [PubMed] [Google Scholar]
  11. Haring R., Kloog Y., Kalir A., Sokolovsky M. Binding studies and photoaffinity labeling identify two classes of phencyclidine receptors in rat brain. Biochemistry. 1987 Sep 8;26(18):5854–5861. doi: 10.1021/bi00392a041. [DOI] [PubMed] [Google Scholar]
  12. Haring R., Zukin R. S., Zukin S. R. Photoaffinity labeling and binding studies reveal the existence of two types of phencyclidine receptors in the NCB-20 cell line. Neurosci Lett. 1990 Apr 20;112(1):92–98. doi: 10.1016/0304-3940(90)90328-7. [DOI] [PubMed] [Google Scholar]
  13. Hellewell S. B., Bowen W. D. A sigma-like binding site in rat pheochromocytoma (PC12) cells: decreased affinity for (+)-benzomorphans and lower molecular weight suggest a different sigma receptor form from that of guinea pig brain. Brain Res. 1990 Sep 17;527(2):244–253. doi: 10.1016/0006-8993(90)91143-5. [DOI] [PubMed] [Google Scholar]
  14. Itzhak Y., Stein I. Sigma binding sites in the brain; an emerging concept for multiple sites and their relevance for psychiatric disorders. Life Sci. 1990;47(13):1073–1081. doi: 10.1016/0024-3205(90)90165-n. [DOI] [PubMed] [Google Scholar]
  15. Jaques S., Jr, Tobes M. C., Sisson J. C., Baker J. A., Wieland D. M. Comparison of the sodium dependency of uptake of meta-lodobenzylguanidine and norepinephrine into cultured bovine adrenomedullary cells. Mol Pharmacol. 1984 Nov;26(3):539–546. [PubMed] [Google Scholar]
  16. Johnson K. M., Snell L. D. Effects of phencyclidine (PCP)-like drugs on turning behavior, 3H-dopamine uptake, and 3H-PCP binding. Pharmacol Biochem Behav. 1985 May;22(5):731–735. doi: 10.1016/0091-3057(85)90521-0. [DOI] [PubMed] [Google Scholar]
  17. Jones S. M., Snell L. D., Johnson K. M. Phencyclidine selectively inhibits N-methyl-D-aspartate-induced hippocampal [3H]norepinephrine release. J Pharmacol Exp Ther. 1987 Feb;240(2):492–497. [PubMed] [Google Scholar]
  18. Kavanaugh M. P., Parker J., Bobker D. H., Keana J. F., Weber E. Solubilization and characterization of sigma-receptors from guinea pig brain membranes. J Neurochem. 1989 Nov;53(5):1575–1580. doi: 10.1111/j.1471-4159.1989.tb08554.x. [DOI] [PubMed] [Google Scholar]
  19. Kenigsberg R. L., Trifaró J. M. Presence of a high affinity uptake system for catecholamines in cultured bovine adrenal chromaffin cells. Neuroscience. 1980;5(9):1547–1556. doi: 10.1016/0306-4522(80)90019-6. [DOI] [PubMed] [Google Scholar]
  20. Koe B. K., Burkhart C. A., Lebel L. A. (+)-[3H]3-(3-hydroxyphenyl)-N-(1-propyl)-piperidine binding to sigma receptors in mouse brain in vivo. Eur J Pharmacol. 1989 Feb 28;161(2-3):263–266. doi: 10.1016/0014-2999(89)90857-1. [DOI] [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. LUBY E. D., COHEN B. D., ROSENBAUM G., GOTTLIEB J. S., KELLEY R. Study of a new schizophrenomimetic drug; sernyl. AMA Arch Neurol Psychiatry. 1959 Mar;81(3):363–369. doi: 10.1001/archneurpsyc.1959.02340150095011. [DOI] [PubMed] [Google Scholar]
  23. Largent B. L., Gundlach A. L., Snyder S. H. Pharmacological and autoradiographic discrimination of sigma and phencyclidine receptor binding sites in brain with (+)-[3H]SKF 10,047, (+)-[3H]-3-[3-hydroxyphenyl]-N-(1-propyl)piperidine and [3H]-1-[1-(2-thienyl)cyclohexyl]piperidine. J Pharmacol Exp Ther. 1986 Aug;238(2):739–748. [PubMed] [Google Scholar]
  24. Malavé A., Borowitz J. L., Yim G. K. Block by phencyclidine of acetylcholine and barium induced adrenal catecholamine secretion. Life Sci. 1983 Aug 8;33(6):511–516. doi: 10.1016/0024-3205(83)90124-8. [DOI] [PubMed] [Google Scholar]
  25. Massamiri T., Duckles S. P. Multiple vascular effects of sigma and PCP ligands: inhibition of amine uptake and contractile responses. J Pharmacol Exp Ther. 1990 Apr;253(1):124–129. [PubMed] [Google Scholar]
  26. Pacholczyk T., Blakely R. D., Amara S. G. Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature. 1991 Mar 28;350(6316):350–354. doi: 10.1038/350350a0. [DOI] [PubMed] [Google Scholar]
  27. Purifoy J. A., Holz R. W. The effects of ketamine, phencyclidine and lidocaine on catecholamine secretion from cultured bovine adrenal chromaffin cells. Life Sci. 1984 Oct 29;35(18):1851–1857. doi: 10.1016/0024-3205(84)90536-8. [DOI] [PubMed] [Google Scholar]
  28. Rogers C. A., Lemaire S. Characterization of (+)-[3H]3-PPP and [3H]TCP binding sites in membrane preparations of bovine adrenal medulla. Prog Clin Biol Res. 1990;328:133–136. [PubMed] [Google Scholar]
  29. Rogers C., Cécyre D., Lemaire S. Presence of sigma and phencyclidine (PCP)-like receptors in membrane preparations of bovine adrenal medulla. Biochem Pharmacol. 1989 Aug 1;38(15):2467–2472. doi: 10.1016/0006-2952(89)90090-7. [DOI] [PubMed] [Google Scholar]
  30. Role L. W., Perlman R. L. Catecholamine uptake into isolated adrenal chromaffin cells: inhibition of uptake by acetylcholine. Neuroscience. 1983 Nov;10(3):987–996. doi: 10.1016/0306-4522(83)90237-3. [DOI] [PubMed] [Google Scholar]
  31. Rothman R. B., Reid A. A., Monn J. A., Jacobson A. E., Rice K. C. The psychotomimetic drug phencyclidine labels two high affinity binding sites in guinea pig brain: evidence for N-methyl-D-aspartate-coupled and dopamine reuptake carrier-associated phencyclidine binding sites. Mol Pharmacol. 1989 Dec;36(6):887–896. [PubMed] [Google Scholar]
  32. Schömig E., Körber M., Bönisch H. Kinetic evidence for a common binding site for substrates and inhibitors of the neuronal noradrenaline carrier. Naunyn Schmiedebergs Arch Pharmacol. 1988 Jun;337(6):626–632. doi: 10.1007/BF00175787. [DOI] [PubMed] [Google Scholar]
  33. Sircar R., Rappaport M., Nichtenhauser R., Zukin S. R. The novel anticonvulsant MK-801: a potent and specific ligand of the brain phencyclidine/sigma-receptor. Brain Res. 1987 Dec 1;435(1-2):235–240. doi: 10.1016/0006-8993(87)91606-4. [DOI] [PubMed] [Google Scholar]
  34. Smith R. C., Meltzer H. Y., Arora R. C., Davis J. M. Effects of phencyclidine on [3H]catecholamine and [3H]serotonin uptake in synaptosomal preparations from rat brain. Biochem Pharmacol. 1977 Aug 1;26(15):1435–1439. doi: 10.1016/0006-2952(77)90370-7. [DOI] [PubMed] [Google Scholar]
  35. Snell L. D., Johnson K. M. Characterization of the inhibition of excitatory amino acid-induced neurotransmitter release in the rat striatum by phencyclidine-like drugs. J Pharmacol Exp Ther. 1986 Sep;238(3):938–946. [PubMed] [Google Scholar]
  36. Snell L. D., Jones S. M., Johnson K. M. Inhibition of N-methyl-D-aspartate-induced hippocampal [3H]norepinephrine release by phencyclidine is dependent on potassium concentration. Neurosci Lett. 1987 Aug 5;78(3):333–337. doi: 10.1016/0304-3940(87)90383-1. [DOI] [PubMed] [Google Scholar]
  37. Snell L. D., Yi S. J., Johnson K. M. Comparison of the effects of MK-801 and phencyclidine on catecholamine uptake and NMDA-induced norepinephrine release. Eur J Pharmacol. 1988 Jan 12;145(2):223–226. doi: 10.1016/0014-2999(88)90235-x. [DOI] [PubMed] [Google Scholar]
  38. Su T. P. Evidence for sigma opioid receptor: binding of [3H]SKF-10047 to etorphine-inaccessible sites in guinea-pig brain. J Pharmacol Exp Ther. 1982 Nov;223(2):284–290. [PubMed] [Google Scholar]
  39. Tam S. W., Cook L. Sigma opiates and certain antipsychotic drugs mutually inhibit (+)-[3H] SKF 10,047 and [3H]haloperidol binding in guinea pig brain membranes. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5618–5621. doi: 10.1073/pnas.81.17.5618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Thomson A. M., West D. C., Lodge D. An N-methylaspartate receptor-mediated synapse in rat cerebral cortex: a site of action of ketamine? Nature. 1985 Feb 7;313(6002):479–481. doi: 10.1038/313479a0. [DOI] [PubMed] [Google Scholar]
  41. Vignon J., Chicheportiche R., Chicheportiche M., Kamenka J. M., Geneste P., Lazdunski M. [3H]TCP: a new tool with high affinity for the PCP receptor in rat brain. Brain Res. 1983 Nov 28;280(1):194–197. doi: 10.1016/0006-8993(83)91193-9. [DOI] [PubMed] [Google Scholar]
  42. Vignon J., Lazdunski M. Structure-function relationships in the inhibition of synaptosomal dopamine uptake by phencyclidine and analogues: potential correlation with binding site identified with [3H]phencyclidine. Biochem Pharmacol. 1984 Feb 15;33(4):700–702. doi: 10.1016/0006-2952(84)90333-2. [DOI] [PubMed] [Google Scholar]
  43. Vignon J., Pinet V., Cerruti C., Kamenka J. M., Chicheportiche R. [3H]N-[1-(2-benzo(b)thiophenyl)cyclohexyl]piperidine ([3H]BTCP): a new phencyclidine analog selective for the dopamine uptake complex. Eur J Pharmacol. 1988 Apr 13;148(3):427–436. doi: 10.1016/0014-2999(88)90122-7. [DOI] [PubMed] [Google Scholar]
  44. Vignon J., Privat A., Chaudieu I., Thierry A., Kamenka J. M., Chicheportiche R. [3H]thienyl-phencyclidine ([3H]TCP) binds to two different sites in rat brain. Localization by autoradiographic and biochemical techniques. Brain Res. 1986 Jul 16;378(1):133–141. doi: 10.1016/0006-8993(86)90294-5. [DOI] [PubMed] [Google Scholar]
  45. Wada A., Arita M., Yanagihara N., Izumi F. Binding of [3H]phencyclidine to adrenal medullary cells: inhibition of 22Na influx, 45Ca influx, 86Rb efflux and catecholamine secretion caused by carbachol and veratridine. Neuroscience. 1988 May;25(2):687–696. doi: 10.1016/0306-4522(88)90269-2. [DOI] [PubMed] [Google Scholar]
  46. Walker J. M., Bowen W. D., Walker F. O., Matsumoto R. R., De Costa B., Rice K. C. Sigma receptors: biology and function. Pharmacol Rev. 1990 Dec;42(4):355–402. [PubMed] [Google Scholar]
  47. Weber E., Sonders M., Quarum M., McLean S., Pou S., Keana J. F. 1,3-Di(2-[5-3H]tolyl)guanidine: a selective ligand that labels sigma-type receptors for psychotomimetic opiates and antipsychotic drugs. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8784–8788. doi: 10.1073/pnas.83.22.8784. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES