Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Nov;104(3):575–578. doi: 10.1111/j.1476-5381.1991.tb12471.x

Changes in brain striatum dopamine and acetylcholine receptors induced by chronic CDP-choline treatment of aging mice.

R Giménez 1, J Raïch 1, J Aguilar 1
PMCID: PMC1908237  PMID: 1839138

Abstract

1. Spiroperidol binding (dopamine D2 receptors) and quinuclidinyl benzilate binding (muscarinic receptors) in striata of 19-month old mice was analyzed for animals that had received chronic administration of cytidine 5'-diphosphocholine (CDP-choline) incorporated into the chow consumed (100 or 500 mg kg-1 added per day) for the 7 months before they were killed. 2. Treated animals displayed an increase in the dopamine receptor densities of 11% for those receiving 100 mg kg-1 and 18% for those receiving 500 mg kg-1 as compared to the control aged animals that had received no CDP-choline. Control animals showed, from 2 months to 19 months of life, a 28% decrease in the receptor density. No change in the affinity of the receptors for spiroperidol was found in the treated or untreated animals. 3. Muscarinic acetylcholine receptor densities were also partially recovered by the same treatment in aged animals that showed a 14% decrease of these receptors in this case. The muscarinic receptor density increased 6% for the animals that received 100 mg kg-1 and 17% for the animals that received 500 mg kg-1 without any change in the affinity of the receptor for quinuclidinyl benzilate. 4. Aged animals displayed a slight increase in brain membrane fluidity as indicated by a decrease in the polarization value of the non-polar fluorophore 1,6-diphenyl-1,3,5-hexatriene. Interestingly, in the treated animals a greater increase in membrane fluidity was determined and found to be very similar for the two doses.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
575

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agnoli A., Ruggieri S., Denaro A., Bruno G. New strategies in the management of Parkinson's disease: a biological approach using a phospholipid precursor (CDP-choline). Neuropsychobiology. 1982;8(6):289–296. doi: 10.1159/000117914. [DOI] [PubMed] [Google Scholar]
  2. Agut J., Coviella I. L., Wurtman R. J. Cytidine(5')diphosphocholine enhances the ability of haloperidol to increase dopamine metabolites in the striatum of the rat and to diminish stereotyped behavior induced by apomorphine. Neuropharmacology. 1984 Dec;23(12A):1403–1406. doi: 10.1016/0028-3908(84)90080-7. [DOI] [PubMed] [Google Scholar]
  3. Biegon A., Duvdevani R., Greenberger V., Segal M. Aging and brain cholinergic muscarinic receptors: an autoradiographic study in the rat. J Neurochem. 1988 Nov;51(5):1381–1385. doi: 10.1111/j.1471-4159.1988.tb01101.x. [DOI] [PubMed] [Google Scholar]
  4. Cogan U., Shinitzky M., Weber G., Nishida T. Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorescent probes. Biochemistry. 1973 Jan 30;12(3):521–528. doi: 10.1021/bi00727a026. [DOI] [PubMed] [Google Scholar]
  5. Cohadon F., Richer E., Poletto B. Etude d'un précurseur des phospholipides dans le traitement des comas traumatiques graves. Neurochirurgie. 1982;28(4):287–290. [PubMed] [Google Scholar]
  6. Dorman R. V., Dabrowiecki Z., Horrocks L. A. Effects of CDPcholine and CDPethanolamine on the alterations in rat brain lipid metabolism induced by global ischemia. J Neurochem. 1983 Jan;40(1):276–279. doi: 10.1111/j.1471-4159.1983.tb12682.x. [DOI] [PubMed] [Google Scholar]
  7. Growdon J. H., Cohen E. L., Wurtman R. J. Effects of oral choline administration on serum and CSF choline levels in patients with Huntington's disease. J Neurochem. 1977 Jan;28(1):229–231. doi: 10.1111/j.1471-4159.1977.tb07732.x. [DOI] [PubMed] [Google Scholar]
  8. Henis Y. I. Lateral mobility measurement of cell surface components: applications for molecular pharmacology. Trends Pharmacol Sci. 1989 Mar;10(3):95–98. doi: 10.1016/0165-6147(89)90201-0. [DOI] [PubMed] [Google Scholar]
  9. Hirata F., Axelrod J. Phospholipid methylation and biological signal transmission. Science. 1980 Sep 5;209(4461):1082–1090. doi: 10.1126/science.6157192. [DOI] [PubMed] [Google Scholar]
  10. Horrocks L. A., Dorman R. V., Dabrowiecki Z., Goracci G., Porcellati G. CDPcholine and CDPethanolamine prevent the release of free fatty acids during brain ischemia. Prog Lipid Res. 1981;20:531–534. doi: 10.1016/0163-7827(81)90093-x. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Leysen J. E., Gommeren W., Laduron P. M. Spiperone: a ligand of choice for neuroleptic receptors. 1. Kinetics and characteristics of in vitro binding. Biochem Pharmacol. 1978 Feb 1;27(3):307–316. doi: 10.1016/0006-2952(78)90233-2. [DOI] [PubMed] [Google Scholar]
  13. Loh H. H., Law P. Y. The role of membrane lipids in receptor mechanisms. Annu Rev Pharmacol Toxicol. 1980;20:201–234. doi: 10.1146/annurev.pa.20.040180.001221. [DOI] [PubMed] [Google Scholar]
  14. Lopez I., Coviella G., Agut J., Wurtman R. J. Effect of cytidine(5')diphosphocholine (CDP-choline) on the total urinary excretion of 3-methoxy-4-hydroxyphenylglycol (MHPG) by rats and humans. J Neural Transm. 1986;66(2):129–134. doi: 10.1007/BF01260908. [DOI] [PubMed] [Google Scholar]
  15. Manaka S., Sano K., Fuchinoue T., Sekino H. Mechanism of action CDP-choline in parkinsonism. Experientia. 1974 Feb 15;30(2):179–180. doi: 10.1007/BF01927720. [DOI] [PubMed] [Google Scholar]
  16. Marquis J. K., Lippa A. S., Pelham R. W. Dopamine receptor alterations with aging in mouse and rat corpus striatum. Biochem Pharmacol. 1981 Jul 1;30(13):1876–1878. doi: 10.1016/0006-2952(81)90031-9. [DOI] [PubMed] [Google Scholar]
  17. Martinet M., Fonlupt P., Pacheco H. Activation of soluble striatal tyrosine hydroxylase in the rat brain after CDPcholine administration. Biochem Pharmacol. 1981 Mar 1;30(5):539–541. doi: 10.1016/0006-2952(81)90642-0. [DOI] [PubMed] [Google Scholar]
  18. Mio M., Okamoto M., Akagi M., Tasaka K. Effect of N-methylation of phosphatidylethanolamine on the fluidity of phospholipid bilayers. Biochem Biophys Res Commun. 1984 May 16;120(3):989–995. doi: 10.1016/s0006-291x(84)80204-1. [DOI] [PubMed] [Google Scholar]
  19. Morgan D. G., May P. C., Finch C. E. Dopamine and serotonin systems in human and rodent brain: effects of age and neurodegenerative disease. J Am Geriatr Soc. 1987 Apr;35(4):334–345. doi: 10.1111/j.1532-5415.1987.tb04641.x. [DOI] [PubMed] [Google Scholar]
  20. Petkov V. D., Popova J. S. Effects of the nootropic agents adafenoxate, meclofenoxate and the acetylcholine precursor citicholine on the brain muscarinic receptors (experiments on rats). Acta Physiol Pharmacol Bulg. 1987;13(2):3–10. [PubMed] [Google Scholar]
  21. Pradhan S. N. Central neurotransmitters and aging. Life Sci. 1980 May 19;26(20):1643–1656. doi: 10.1016/0024-3205(80)90172-1. [DOI] [PubMed] [Google Scholar]
  22. Salvadorini F., Galeone F., Nicotera M., Ombrato M., Saba P. Clinical evaluation of CDP-choline (Nicholin): efficacy As antidepressant treatment. Curr Ther Res Clin Exp. 1975 Sep;18(3):513–520. [PubMed] [Google Scholar]
  23. Seeman P., Bzowej N. H., Guan H. C., Bergeron C., Becker L. E., Reynolds G. P., Bird E. D., Riederer P., Jellinger K., Watanabe S. Human brain dopamine receptors in children and aging adults. Synapse. 1987;1(5):399–404. doi: 10.1002/syn.890010503. [DOI] [PubMed] [Google Scholar]
  24. Söderberg M., Edlund C., Kristensson K., Dallner G. Lipid compositions of different regions of the human brain during aging. J Neurochem. 1990 Feb;54(2):415–423. doi: 10.1111/j.1471-4159.1990.tb01889.x. [DOI] [PubMed] [Google Scholar]
  25. Yashima K., Takamatsu M., Okuda K. Intestinal absorption of cytidine diphosphate choline and its changes in the digestive tract. J Nutr Sci Vitaminol (Tokyo) 1975;21(1):49–60. doi: 10.3177/jnsv.21.49. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES