Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Nov;104(3):685–690. doi: 10.1111/j.1476-5381.1991.tb12489.x

Direct effects of adenylyl 5'-(beta,gamma-methylene)diphosphonate, a stable ATP analogue, on relaxant P1-purinoceptors in smooth muscle.

S M Hourani 1, S J Bailey 1, J Nicholls 1, I Kitchen 1
PMCID: PMC1908244  PMID: 1797327

Abstract

1. Previous results obtained with the rat colon muscularis mucosae, which contracts in response to adenosine and adenosine 5'-triphosphate (ATP), had suggested that adenylyl 5'-(beta,gamma-methylene)diphosphonate (AMPPCP), a stable ATP analogue, acted on P1-purinoceptors rather than, as expected, on P2-purinoceptors. This possibility has been examined in two tissues in which adenosine and ATP both cause relaxation, the guinea-pig taenia caeci and the rat duodenum. 2. ATP, 2-methylthio-ATP (2-MeSATP), AMPPCP, adenosine 5'-(alpha,beta-methylene)triphosphonate (AMPCPP) and adenosine each relaxed the taenia caeci and the duodenum, and the order of potency of the nucleotides in each tissue was 2-MeSATP greater than ATP greater than AMPCPP greater than AMPPCP, indicating that these effects were mediated by P2Y-purinoceptors. 3. The P1 antagonist 8-(p-sulphophenyl)theophylline (8-SPT) (100 microM) did not affect the responses to ATP, 2-MeSATP or AMPCPP in either tissue, but inhibited the responses of adenosine and of AMPPCP in both tissues. In the duodenum a lower concentration of 8-SPT caused a parallel shift to the right of the concentration-response curve to adenosine and to AMPPCP but to different extents, with AMPPCP being inhibited more powerfully than adenosine. A dose-ratio of around 5 was observed for adenosine and AMPPCP at concentrations of 8-SPT of 20 microM and 2 microM respectively, but Schild analysis resulted in plots with slopes greater than unity.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
685

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey S. J., Hourani S. M. A study of the purinoceptors mediating contraction in the rat colon. Br J Pharmacol. 1990 Aug;100(4):753–756. doi: 10.1111/j.1476-5381.1990.tb14087.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bruns R. F., Lu G. H., Pugsley T. A. Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol. 1986 Apr;29(4):331–346. [PubMed] [Google Scholar]
  3. Burnstock G., Kennedy C. Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol. 1985;16(5):433–440. doi: 10.1016/0306-3623(85)90001-1. [DOI] [PubMed] [Google Scholar]
  4. Collis M. G., Jacobson K. A., Tomkins D. M. Apparent affinity of some 8-phenyl-substituted xanthines at adenosine receptors in guinea-pig aorta and atria. Br J Pharmacol. 1987 Sep;92(1):69–75. doi: 10.1111/j.1476-5381.1987.tb11297.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Collis M. G., Pettinger S. J. Can ATP stimulate P1-receptors in guinea-pig atrium without conversion to adenosine? Eur J Pharmacol. 1982 Jul 30;81(4):521–529. doi: 10.1016/0014-2999(82)90341-7. [DOI] [PubMed] [Google Scholar]
  6. Collis M. G., Stoggall S. M., Martin F. M. Apparent affinity of 1,3-dipropyl-8-cyclopentylxanthine for adenosine A1 and A2 receptors in isolated tissues from guinea-pigs. Br J Pharmacol. 1989 Aug;97(4):1274–1278. doi: 10.1111/j.1476-5381.1989.tb12589.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cusack N. J., Hourani S. M., Loizou G. D., Welford L. A. Pharmacological effects of isopolar phosphonate analogues of ATP on P2-purinoceptors in guinea-pig taenia coli and urinary bladder. Br J Pharmacol. 1987 Apr;90(4):791–795. doi: 10.1111/j.1476-5381.1987.tb11233.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dahlén S. E., Hedqvist P. ATP, beta-gamma-methylene-ATP, and adenosine inhibit non-cholinergic non-adrenergic transmission in rat urinary bladder. Acta Physiol Scand. 1980 Jun;109(2):137–142. doi: 10.1111/j.1748-1716.1980.tb06578.x. [DOI] [PubMed] [Google Scholar]
  9. Franco R., Hoyle C. H., Centelles J. J., Burnstock G. Degradation of adenosine by extracellular adenosine deaminase in the rat duodenum. Gen Pharmacol. 1988;19(5):679–681. doi: 10.1016/0306-3623(88)90128-0. [DOI] [PubMed] [Google Scholar]
  10. Gordon J. L. Extracellular ATP: effects, sources and fate. Biochem J. 1986 Jan 15;233(2):309–319. doi: 10.1042/bj2330309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hourani S. M., Chown J. A. The effects of some possible inhibitors of ectonucleotidases on the breakdown and pharmacological effects of ATP in the guinea-pig urinary bladder. Gen Pharmacol. 1989;20(4):413–416. doi: 10.1016/0306-3623(89)90188-2. [DOI] [PubMed] [Google Scholar]
  12. Hourani S. M., Loizou G. D., Cusack N. J. Pharmacological effects of L-AMP-PCP on ATP receptors in smooth muscle. Eur J Pharmacol. 1986 Nov 12;131(1):99–103. doi: 10.1016/0014-2999(86)90521-2. [DOI] [PubMed] [Google Scholar]
  13. Hourani S. M., Welford L. A., Cusack N. J. L-AMP-PCP, an ATP receptor agonist in guinea-pig bladder, is inactive on taenia coli. Eur J Pharmacol. 1985 Jan 22;108(2):197–200. doi: 10.1016/0014-2999(85)90726-5. [DOI] [PubMed] [Google Scholar]
  14. Hourani S. M., Welford L. A., Loizou G. D., Cusak N. J. Adenosine 5'-(2-fluorodiphosphate) is a selective agonist at P2-purinoceptors mediating relaxation of smooth muscle. Eur J Pharmacol. 1988 Feb 16;147(1):131–136. doi: 10.1016/0014-2999(88)90642-5. [DOI] [PubMed] [Google Scholar]
  15. Kenakin T. P., Pike N. B. An in vitro analysis of purine-mediated renal vasoconstriction in rat isolated kidney. Br J Pharmacol. 1987 Feb;90(2):373–381. doi: 10.1111/j.1476-5381.1987.tb08967.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Moody C. J., Burnstock G. Evidence for the presence of P1-purinoceptors on cholinergic nerve terminals in the guinea-pig ileum. Eur J Pharmacol. 1982 Jan 8;77(1):1–9. doi: 10.1016/0014-2999(82)90527-1. [DOI] [PubMed] [Google Scholar]
  17. Moody C. J., Meghji P., Burnstock G. Stimulation of P1-purinoceptors by ATP depends partly on its conversion to AMP and adenosine and partly on direct action. Eur J Pharmacol. 1984 Jan 13;97(1-2):47–54. doi: 10.1016/0014-2999(84)90511-9. [DOI] [PubMed] [Google Scholar]
  18. Nicholls J., Hourani S. M., Kitchen I. The ontogeny of purinoceptors in rat urinary bladder and duodenum. Br J Pharmacol. 1990 Aug;100(4):874–878. doi: 10.1111/j.1476-5381.1990.tb14107.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ribeiro J. A., Sebastião A. M. Adenosine receptors and calcium: basis for proposing a third (A3) adenosine receptor. Prog Neurobiol. 1986;26(3):179–209. doi: 10.1016/0301-0082(86)90015-8. [DOI] [PubMed] [Google Scholar]
  20. Shinozuka K., Bjur R. A., Westfall D. P. Characterization of prejunctional purinoceptors on adrenergic nerves of the rat caudal artery. Naunyn Schmiedebergs Arch Pharmacol. 1988 Sep;338(3):221–227. doi: 10.1007/BF00173391. [DOI] [PubMed] [Google Scholar]
  21. Smith M. A., Buxton I. L., Westfall D. P. Pharmacological classification of receptors for adenyl purines in guinea pig myometrium. J Pharmacol Exp Ther. 1988 Dec;247(3):1059–1063. [PubMed] [Google Scholar]
  22. Welford L. A., Anderson W. H. Purine receptors and guinea-pig trachea: evidence for a direct action of ATP. Br J Pharmacol. 1988 Nov;95(3):689–694. doi: 10.1111/j.1476-5381.1988.tb11694.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Welford L. A., Cusack N. J., Hourani S. M. ATP analogues and the guinea-pig taenia coli: a comparison of the structure-activity relationships of ectonucleotidases with those of the P2-purinoceptor. Eur J Pharmacol. 1986 Oct 7;129(3):217–224. doi: 10.1016/0014-2999(86)90431-0. [DOI] [PubMed] [Google Scholar]
  24. Welford L. A., Cusack N. J., Hourani S. M. The structure-activity relationships of ectonucleotidases and of excitatory P2-purinoceptors: evidence that dephosphorylation of ATP analogues reduces pharmacological potency. Eur J Pharmacol. 1987 Sep 2;141(1):123–130. doi: 10.1016/0014-2999(87)90418-3. [DOI] [PubMed] [Google Scholar]
  25. White T. D. Role of adenine compounds in autonomic neurotransmission. Pharmacol Ther. 1988;38(2):129–168. doi: 10.1016/0163-7258(88)90095-2. [DOI] [PubMed] [Google Scholar]
  26. Wiklund N. P., Gustafsson L. E., Lundin J. Pre- and postjunctional modulation of cholinergic neuroeffector transmission by adenine nucleotides. Experiments with agonist and antagonist. Acta Physiol Scand. 1985 Dec;125(4):681–691. doi: 10.1111/j.1748-1716.1985.tb07771.x. [DOI] [PubMed] [Google Scholar]
  27. Williams M. Purine receptors in mammalian tissues: pharmacology and functional significance. Annu Rev Pharmacol Toxicol. 1987;27:315–345. doi: 10.1146/annurev.pa.27.040187.001531. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES