Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Nov;70(11):7569–7579. doi: 10.1128/jvi.70.11.7569-7579.1996

The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL.

M R Wills 1, A J Carmichael 1, K Mynard 1, X Jin 1, M P Weekes 1, B Plachter 1, J G Sissons 1
PMCID: PMC190825  PMID: 8892876

Abstract

Cytotoxic T lymphocytes (CTL) appear to play an important role in the control of human cytomegalovirus (HCMV) in the normal virus carrier: previous studies have identified peripheral blood CD8+ CTL specific for the HCMV major immediate-early gene product (IE1) and more recently, by bulk culture and cloning techniques, have identified CTL specific for a structural gene product, the lower matrix protein pp65. In order to determine the relative contributions of CTL which recognize the HCMV proteins IE1, pp65, and glycoprotein B (gB) to the total HCMV-specific CTL response, we have used a limiting-dilution analysis system to quantify HCMV-specific CTL precursors with different specificities, allowing the antigenic specificity of multiple short-term CTL clones to be assessed, in a group of six healthy seropositive donors. All donors showed high frequencies of HCMV-specific major histocompatibility complex-restricted CTL precursors. There was a very high frequency of CTL specific for pp65 (lower matrix protein); IE1-specific CTL were also detectable at lower frequencies in three of five donors, while CTL directed to gB were undetectable. A pp65 gene deletion mutant of HCMV was then used to estimate the contribution of pp65-specific CTL to the total HCMV-specific CTL response; this showed that between 70 and 90% of all CTL recognizing HCMV-infected cells were pp65 specific. Analysis of the peptide specificity of pp65-specific CTL showed that some donors have a highly focused response recognizing a single peptide; the T-cell receptor Vbeta gene usage in these two donors was shown to be remarkably restricted, with over half of the responding CD8+ T cells utilizing a single Vbeta gene rearrangement. Other subjects recognized multiple pp65 peptides: nine new pp65 CTL peptide epitopes were defined, and for five of these the HLA-presenting allele has been identified. All four of the HLA A2 donors tested in this study recognized the same peptide. This apparent domination of the CTL response to HCMV during persistent infection by a single structural protein, irrespective of major histocompatibility complex haplotype, is not clearly described for other persistent virus infections, and the mechanism requires further investigation.

Full Text

The Full Text of this article is available as a PDF (257.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebischer T., Oehen S., Hengartner H. Preferential usage of V alpha 4 and V beta 10 T cell receptor genes by lymphocytic choriomeningitis virus glycoprotein-specific H-2Db-restricted cytotoxic T cells. Eur J Immunol. 1990 Mar;20(3):523–531. doi: 10.1002/eji.1830200310. [DOI] [PubMed] [Google Scholar]
  2. Alp N. J., Allport T. D., Van Zanten J., Rodgers B., Sissons J. G., Borysiewicz L. K. Fine specificity of cellular immune responses in humans to human cytomegalovirus immediate-early 1 protein. J Virol. 1991 Sep;65(9):4812–4820. doi: 10.1128/jvi.65.9.4812-4820.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barnes P. D., Grundy J. E. Down-regulation of the class I HLA heterodimer and beta 2-microglobulin on the surface of cells infected with cytomegalovirus. J Gen Virol. 1992 Sep;73(Pt 9):2395–2403. doi: 10.1099/0022-1317-73-9-2395. [DOI] [PubMed] [Google Scholar]
  4. Beersma M. F., Bijlmakers M. J., Ploegh H. L. Human cytomegalovirus down-regulates HLA class I expression by reducing the stability of class I H chains. J Immunol. 1993 Nov 1;151(9):4455–4464. [PubMed] [Google Scholar]
  5. Borysiewicz L. K., Hickling J. K., Graham S., Sinclair J., Cranage M. P., Smith G. L., Sissons J. G. Human cytomegalovirus-specific cytotoxic T cells. Relative frequency of stage-specific CTL recognizing the 72-kD immediate early protein and glycoprotein B expressed by recombinant vaccinia viruses. J Exp Med. 1988 Sep 1;168(3):919–931. doi: 10.1084/jem.168.3.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bowness P., Moss P. A., Rowland-Jones S., Bell J. I., McMichael A. J. Conservation of T cell receptor usage by HLA B27-restricted influenza-specific cytotoxic T lymphocytes suggests a general pattern for antigen-specific major histocompatibility complex class I-restricted responses. Eur J Immunol. 1993 Jul;23(7):1417–1421. doi: 10.1002/eji.1830230702. [DOI] [PubMed] [Google Scholar]
  7. Browne H., Smith G., Beck S., Minson T. A complex between the MHC class I homologue encoded by human cytomegalovirus and beta 2 microglobulin. Nature. 1990 Oct 25;347(6295):770–772. doi: 10.1038/347770a0. [DOI] [PubMed] [Google Scholar]
  8. Carmichael A., Jin X., Sissons P., Borysiewicz L. Quantitative analysis of the human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T lymphocyte (CTL) response at different stages of HIV-1 infection: differential CTL responses to HIV-1 and Epstein-Barr virus in late disease. J Exp Med. 1993 Feb 1;177(2):249–256. doi: 10.1084/jem.177.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cha T. A., Tom E., Kemble G. W., Duke G. M., Mocarski E. S., Spaete R. R. Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J Virol. 1996 Jan;70(1):78–83. doi: 10.1128/jvi.70.1.78-83.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cranage M. P., Kouzarides T., Bankier A. T., Satchwell S., Weston K., Tomlinson P., Barrell B., Hart H., Bell S. E., Minson A. C. Identification of the human cytomegalovirus glycoprotein B gene and induction of neutralizing antibodies via its expression in recombinant vaccinia virus. EMBO J. 1986 Nov;5(11):3057–3063. doi: 10.1002/j.1460-2075.1986.tb04606.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dhib-Jalbut S., McFarlin D. E., McFarland H. F. Measles virus-polypeptide specificity of the cytotoxic T-lymphocyte response in multiple sclerosis. J Neuroimmunol. 1989 Feb;21(2-3):205–212. doi: 10.1016/0165-5728(89)90176-8. [DOI] [PubMed] [Google Scholar]
  12. Gavin M. A., Gilbert M. J., Riddell S. R., Greenberg P. D., Bevan M. J. Alkali hydrolysis of recombinant proteins allows for the rapid identification of class I MHC-restricted CTL epitopes. J Immunol. 1993 Oct 15;151(8):3971–3980. [PubMed] [Google Scholar]
  13. Gilbert M. J., Riddell S. R., Li C. R., Greenberg P. D. Selective interference with class I major histocompatibility complex presentation of the major immediate-early protein following infection with human cytomegalovirus. J Virol. 1993 Jun;67(6):3461–3469. doi: 10.1128/jvi.67.6.3461-3469.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gotch F., McMichael A., Smith G., Moss B. Identification of viral molecules recognized by influenza-specific human cytotoxic T lymphocytes. J Exp Med. 1987 Feb 1;165(2):408–416. doi: 10.1084/jem.165.2.408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kalams S. A., Johnson R. P., Trocha A. K., Dynan M. J., Ngo H. S., D'Aquila R. T., Kurnick J. T., Walker B. D. Longitudinal analysis of T cell receptor (TCR) gene usage by human immunodeficiency virus 1 envelope-specific cytotoxic T lymphocyte clones reveals a limited TCR repertoire. J Exp Med. 1994 Apr 1;179(4):1261–1271. doi: 10.1084/jem.179.4.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Koszinowski U. H., Del Val M., Reddehase M. J. Cellular and molecular basis of the protective immune response to cytomegalovirus infection. Curr Top Microbiol Immunol. 1990;154:189–220. doi: 10.1007/978-3-642-74980-3_8. [DOI] [PubMed] [Google Scholar]
  17. Lehner P. J., Wang E. C., Moss P. A., Williams S., Platt K., Friedman S. M., Bell J. I., Borysiewicz L. K. Human HLA-A0201-restricted cytotoxic T lymphocyte recognition of influenza A is dominated by T cells bearing the V beta 17 gene segment. J Exp Med. 1995 Jan 1;181(1):79–91. doi: 10.1084/jem.181.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McLaughlin-Taylor E., Pande H., Forman S. J., Tanamachi B., Li C. R., Zaia J. A., Greenberg P. D., Riddell S. R. Identification of the major late human cytomegalovirus matrix protein pp65 as a target antigen for CD8+ virus-specific cytotoxic T lymphocytes. J Med Virol. 1994 May;43(1):103–110. doi: 10.1002/jmv.1890430119. [DOI] [PubMed] [Google Scholar]
  19. McMichael A. J., Gotch F. M., Dongworth D. W., Clark A., Potter C. W. Declining T-cell immunity to influenza, 1977-82. Lancet. 1983 Oct 1;2(8353):762–764. doi: 10.1016/s0140-6736(83)92297-3. [DOI] [PubMed] [Google Scholar]
  20. Moss P. A., Moots R. J., Rosenberg W. M., Rowland-Jones S. J., Bodmer H. C., McMichael A. J., Bell J. I. Extensive conservation of alpha and beta chains of the human T-cell antigen receptor recognizing HLA-A2 and influenza A matrix peptide. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):8987–8990. doi: 10.1073/pnas.88.20.8987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Quinnan G. V., Jr, Burns W. H., Kirmani N., Rook A. H., Manischewitz J., Jackson L., Santos G. W., Saral R. HLA-restricted cytotoxic T lymphocytes are an early immune response and important defense mechanism in cytomegalovirus infections. Rev Infect Dis. 1984 Mar-Apr;6(2):156–163. doi: 10.1093/clinids/6.2.156. [DOI] [PubMed] [Google Scholar]
  22. Quinnan G. V., Jr, Kirmani N., Rook A. H., Manischewitz J. F., Jackson L., Moreschi G., Santos G. W., Saral R., Burns W. H. Cytotoxic t cells in cytomegalovirus infection: HLA-restricted T-lymphocyte and non-T-lymphocyte cytotoxic responses correlate with recovery from cytomegalovirus infection in bone-marrow-transplant recipients. N Engl J Med. 1982 Jul 1;307(1):7–13. doi: 10.1056/NEJM198207013070102. [DOI] [PubMed] [Google Scholar]
  23. Rammensee H. G., Friede T., Stevanoviíc S. MHC ligands and peptide motifs: first listing. Immunogenetics. 1995;41(4):178–228. doi: 10.1007/BF00172063. [DOI] [PubMed] [Google Scholar]
  24. Reusser P., Riddell S. R., Meyers J. D., Greenberg P. D. Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: pattern of recovery and correlation with cytomegalovirus infection and disease. Blood. 1991 Sep 1;78(5):1373–1380. [PubMed] [Google Scholar]
  25. Riddell S. R., Rabin M., Geballe A. P., Britt W. J., Greenberg P. D. Class I MHC-restricted cytotoxic T lymphocyte recognition of cells infected with human cytomegalovirus does not require endogenous viral gene expression. J Immunol. 1991 Apr 15;146(8):2795–2804. [PubMed] [Google Scholar]
  26. Schmolke S., Kern H. F., Drescher P., Jahn G., Plachter B. The dominant phosphoprotein pp65 (UL83) of human cytomegalovirus is dispensable for growth in cell culture. J Virol. 1995 Oct;69(10):5959–5968. doi: 10.1128/jvi.69.10.5959-5968.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Spaete R. R., Gehrz R. C., Landini M. P. Human cytomegalovirus structural proteins. J Gen Virol. 1994 Dec;75(Pt 12):3287–3308. doi: 10.1099/0022-1317-75-12-3287. [DOI] [PubMed] [Google Scholar]
  28. Walter E. A., Greenberg P. D., Gilbert M. J., Finch R. J., Watanabe K. S., Thomas E. D., Riddell S. R. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med. 1995 Oct 19;333(16):1038–1044. doi: 10.1056/NEJM199510193331603. [DOI] [PubMed] [Google Scholar]
  29. Warren A. P., Ducroq D. H., Lehner P. J., Borysiewicz L. K. Human cytomegalovirus-infected cells have unstable assembly of major histocompatibility complex class I complexes and are resistant to lysis by cytotoxic T lymphocytes. J Virol. 1994 May;68(5):2822–2829. doi: 10.1128/jvi.68.5.2822-2829.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yamashita Y., Shimokata K., Mizuno S., Yamaguchi H., Nishiyama Y. Down-regulation of the surface expression of class I MHC antigens by human cytomegalovirus. Virology. 1993 Apr;193(2):727–736. doi: 10.1006/viro.1993.1181. [DOI] [PubMed] [Google Scholar]
  31. Yanagi Y., Maekawa R., Cook T., Kanagawa O., Oldstone M. B. Restricted V-segment usage in T-cell receptors from cytotoxic T lymphocytes specific for a major epitope of lymphocytic choriomeningitis virus. J Virol. 1990 Dec;64(12):5919–5926. doi: 10.1128/jvi.64.12.5919-5926.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yanagi Y., Tishon A., Lewicki H., Cubitt B. A., Oldstone M. B. Diversity of T-cell receptors in virus-specific cytotoxic T lymphocytes recognizing three distinct viral epitopes restricted by a single major histocompatibility complex molecule. J Virol. 1992 Apr;66(4):2527–2531. doi: 10.1128/jvi.66.4.2527-2531.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES