Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Sep;104(1):234–238. doi: 10.1111/j.1476-5381.1991.tb12412.x

Muscarinic antagonists attenuate the increase in accumbens and striatum dopamine metabolism produced by clozapine but not by haloperidol.

R Rivest 1, C A Marsden 1
PMCID: PMC1908259  PMID: 1786513

Abstract

1. The effect of the muscarinic antagonists, scopolamine and atropine, were examined on the increase in extracellular 3,4-dihydroxyphenylacetic acid (DOPAC) in the nucleus accumbens and the striatum induced by haloperidol and clozapine by use of in vivo differential pulse voltammetry with carbon fibre electrodes in anaesthetized rats. 2. Animals received saline (1 ml kg-1, s.c.), scopolamine (1 mg kg-1, o.p.) or atropine (20 micrograms, i.c.v.) followed 15 min later by saline (10 microliters, i.c.v.), haloperidol (1 mg kg-1, s.c.) or clozapine (30 mg kg-1, i.p.) and extracellular DOPAC was simultaneously recorded in the nucleus accumbens and the striatum every 5 min for 60 min after drug administration. 3. Scopolamine or atropine alone had no effect on the DOPAC peak height but attenuated the increase in extracellular DOPAC induced by clozapine in both brain regions. Neither scopolamine nor atropine altered the haloperidol-induced increase in accumbens or striatal extracellular DOPAC. 4. The present results demonstrate that muscarinic antagonists attenuate the increase in accumbens and striatal dopamine metabolism in vivo produced by the atypical neuroleptic clozapine but not the haloperidol-induced increase in dopamine metabolism. The results indicate that central muscarinic receptors are involved in the actions on dopaminergic function of clozapine but not haloperidol.

Full text

PDF
234

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andén N. E., Bédard P. Influences of cholinergic mechanisms on the function and turnover of brain dopamine. J Pharm Pharmacol. 1971 Jun;23(6):460–462. doi: 10.1111/j.2042-7158.1971.tb08686.x. [DOI] [PubMed] [Google Scholar]
  2. Andén N. E. Dopamine turnover in the corpus striatum and the lumbic system after treatment with neuroleptic and anti-acetylcholine drugs. J Pharm Pharmacol. 1972 Nov;24(11):905–906. doi: 10.1111/j.2042-7158.1972.tb08912.x. [DOI] [PubMed] [Google Scholar]
  3. Chiodo L. A., Bunney B. S. Possible mechanisms by which repeated clozapine administration differentially affects the activity of two subpopulations of midbrain dopamine neurons. J Neurosci. 1985 Sep;5(9):2539–2544. doi: 10.1523/JNEUROSCI.05-09-02539.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chiodo L. A., Bunney B. S. Typical and atypical neuroleptics: differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons. J Neurosci. 1983 Aug;3(8):1607–1619. doi: 10.1523/JNEUROSCI.03-08-01607.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chipkin R. E., Latranyi M. B. Similarity of clozapine and SCH 23390 in reserpinized rats suggests a common mechanism of action. Eur J Pharmacol. 1987 Apr 29;136(3):371–375. doi: 10.1016/0014-2999(87)90310-4. [DOI] [PubMed] [Google Scholar]
  6. Compton D. R., Johnson K. M. Effects of acute and chronic clozapine and haloperidol on in vitro release of acetylcholine and dopamine from striatum and nucleus accumbens. J Pharmacol Exp Ther. 1989 Feb;248(2):521–530. [PubMed] [Google Scholar]
  7. Costa E., Cheney D. L., Mao C. C., Moroni F. Action of antischizophrenic drugs on the metabolism of gamma-aminobutyric acid and acetylcholine in globus pallidus, striatum and n. accumbens. Fed Proc. 1978 Aug;37(10):2408–2414. [PubMed] [Google Scholar]
  8. Costall B., Naylor R. J. A comparison of the abilities of typical neuroleptic agents and of thioridazine, clozapine, sulpiride and metoclopramide to antagonise the hyperactivity induced by dopamine applied intracerebrally to areas of the extrapyramidal and mesolimbic systems. Eur J Pharmacol. 1976 Nov;40(1):9–19. doi: 10.1016/0014-2999(76)90348-4. [DOI] [PubMed] [Google Scholar]
  9. Creese I., Burt D. R., Snyder S. H. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science. 1976 Apr 30;192(4238):481–483. doi: 10.1126/science.3854. [DOI] [PubMed] [Google Scholar]
  10. Crespi F., Paret J., Keane P. E., Morre M. An improved differential pulse voltammetry technique allows the simultaneous analysis of dopaminergic and serotonergic activities in vivo with a single carbon-fibre electrode. Neurosci Lett. 1984 Nov 23;52(1-2):159–164. doi: 10.1016/0304-3940(84)90367-7. [DOI] [PubMed] [Google Scholar]
  11. Criswell H. E., Mueller R. A., Breese G. A. Clozapine antagonism of D-1 and D-2 dopamine receptor-mediated behaviors. Eur J Pharmacol. 1989 Jan 10;159(2):141–147. doi: 10.1016/0014-2999(89)90698-5. [DOI] [PubMed] [Google Scholar]
  12. Fjalland B., Christensen A. V., Hyttel J. Peripheral and central muscarinic receptor affinity of psychotropic drugs. Naunyn Schmiedebergs Arch Pharmacol. 1977 Dec;301(1):5–9. doi: 10.1007/BF00501257. [DOI] [PubMed] [Google Scholar]
  13. Gerlach J., Simmelsgaard H. Tardive dyskinesia during and following treatment with haloperidol, haloperidol + biperiden, thioridazine, and clozapine. Psychopharmacology (Berl) 1978 Oct 31;59(2):105–112. doi: 10.1007/BF00427742. [DOI] [PubMed] [Google Scholar]
  14. Gonon F., Buda M., Cespuglio R., Jouvet M., Pujol J. F. In vivo electrochemical detection of catechols in the neostriatum of anaesthetized rats: dopamine or DOPAC? Nature. 1980 Aug 28;286(5776):902–904. doi: 10.1038/286902a0. [DOI] [PubMed] [Google Scholar]
  15. Gurwitz D., Kloog Y., Egozi Y., Sokolovsky M. Central muscarinic receptor degeneration following 6-hydroxydopamine lesion in mice. Life Sci. 1980 Jan 7;26(1):79–84. doi: 10.1016/0024-3205(79)90191-7. [DOI] [PubMed] [Google Scholar]
  16. HERMAN E., PLEASURE H. Clinical evaluation of thioridazine and chlorpromazine in chronic schizophrenics. Dis Nerv Syst. 1963 Jan;24:54–59. [PubMed] [Google Scholar]
  17. Herrling P. L., Misbach-Lesenne B. Effects of clozapine in a selective muscarinic bioassay and on single cells of the rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol. 1982 Jul;320(1):20–25. doi: 10.1007/BF00499066. [DOI] [PubMed] [Google Scholar]
  18. Le Moine C., Tison F., Bloch B. D2 dopamine receptor gene expression by cholinergic neurons in the rat striatum. Neurosci Lett. 1990 Sep 18;117(3):248–252. doi: 10.1016/0304-3940(90)90671-u. [DOI] [PubMed] [Google Scholar]
  19. Maidment N. T., Marsden C. A. Acute administration of clozapine, thioridazine and metoclopramide increases extracellular DOPAC and decreases extracellular 5-HIAA, measured in the nucleus accumbens and striatum of the rat using in vivo voltammetry. Neuropharmacology. 1987 Feb-Mar;26(2-3):187–193. doi: 10.1016/0028-3908(87)90208-5. [DOI] [PubMed] [Google Scholar]
  20. McMillen B. A., DaVanzo E. A., Song A. H., Scott S. M., Rodriguez M. E. Effects of classical and atypical antipsychotic drugs on isolation-induced aggression in male mice. Eur J Pharmacol. 1989 Jan 24;160(1):149–153. doi: 10.1016/0014-2999(89)90664-x. [DOI] [PubMed] [Google Scholar]
  21. Meltzer H. Y., Matsubara S., Lee J. C. Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exp Ther. 1989 Oct;251(1):238–246. [PubMed] [Google Scholar]
  22. Meltzer H. Y., Stahl S. M. The dopamine hypothesis of schizophrenia: a review. Schizophr Bull. 1976;2(1):19–76. doi: 10.1093/schbul/2.1.19. [DOI] [PubMed] [Google Scholar]
  23. Miller R. J., Hiley C. R. Anti-muscarinic properties of neuroleptics and drug-induced Parkinsonism. Nature. 1974 Apr 12;248(449):596–597. doi: 10.1038/248596a0. [DOI] [PubMed] [Google Scholar]
  24. Moghaddam B., Bunney B. S. Acute effects of typical and atypical antipsychotic drugs on the release of dopamine from prefrontal cortex, nucleus accumbens, and striatum of the rat: an in vivo microdialysis study. J Neurochem. 1990 May;54(5):1755–1760. doi: 10.1111/j.1471-4159.1990.tb01230.x. [DOI] [PubMed] [Google Scholar]
  25. Murray A. M., Waddington J. L. The interaction of clozapine with dopamine D1 versus dopamine D2 receptor-mediated function: behavioural indices. Eur J Pharmacol. 1990 Sep 4;186(1):79–86. doi: 10.1016/0014-2999(90)94062-3. [DOI] [PubMed] [Google Scholar]
  26. Peroutka S. J., U'Prichard D. C., Greenberg D. A., Snyder S. H. Neuroleptic drug interactions with norepinephrine alpha receptor binding sites in rat brain. Neuropharmacology. 1977 Sep;16(9):549–556. doi: 10.1016/0028-3908(77)90023-5. [DOI] [PubMed] [Google Scholar]
  27. Perry B. D., Simon P. R., U'Prichard D. C. Interactions of neuroleptic compounds at alpha 2-adrenergic receptor affinity states in bovine caudate nucleus. Eur J Pharmacol. 1983 Nov 25;95(3-4):315–318. doi: 10.1016/0014-2999(83)90654-4. [DOI] [PubMed] [Google Scholar]
  28. Racagni G., Cheney D. L., Trabucchi M., Costa E. In vivo actions of clozapine and haloperidol on the turnover rate of acetylcholine in rat striatum. J Pharmacol Exp Ther. 1976 Feb;196(2):323–332. [PubMed] [Google Scholar]
  29. Richelson E., Nelson A. Antagonism by neuroleptics of neurotransmitter receptors of normal human brain in vitro. Eur J Pharmacol. 1984 Aug 17;103(3-4):197–204. doi: 10.1016/0014-2999(84)90478-3. [DOI] [PubMed] [Google Scholar]
  30. Rivest R., Jolicoeur F. B., Marsden C. A. Neurotensin causes a greater increase in the metabolism of dopamine in the accumbens than in the striatum in vivo. Neuropharmacology. 1991 Jan;30(1):25–33. doi: 10.1016/0028-3908(91)90038-d. [DOI] [PubMed] [Google Scholar]
  31. Sayers A. C., Bürki H. R. Antiacetylcholine activities of psychoactive drugs: a comparison of the [3H]quinuclidinyl benzilate binding assay with conventional methods. J Pharm Pharmacol. 1976 Mar;28(3):252–253. doi: 10.1111/j.2042-7158.1976.tb04142.x. [DOI] [PubMed] [Google Scholar]
  32. Seeman P., Lee T., Chau-Wong M., Wong K. Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature. 1976 Jun 24;261(5562):717–719. doi: 10.1038/261717a0. [DOI] [PubMed] [Google Scholar]
  33. Sethy V. H., Van Woert M. H. Regulation of striatal acetylcholine concentration by dopamine receptors. Nature. 1974 Oct 11;251(5475):529–530. doi: 10.1038/251529a0. [DOI] [PubMed] [Google Scholar]
  34. Sharp T., Maidment N. T., Brazell M. P., Zetterström T., Ungerstedt U., Bennett G. W., Marsden C. A. Changes in monoamine metabolites measured by simultaneous in vivo differential pulse voltammetry and intracerebral dialysis. Neuroscience. 1984 Aug;12(4):1213–1221. doi: 10.1016/0306-4522(84)90015-0. [DOI] [PubMed] [Google Scholar]
  35. Snyder S., Greenberg D., Yamamura H. I. Antischizophrenic drugs and brain cholinergic receptors. Affinity for muscarinic sites predicts extrapyramidal effects. Arch Gen Psychiatry. 1974 Jul;31(1):58–61. doi: 10.1001/archpsyc.1974.01760130040006. [DOI] [PubMed] [Google Scholar]
  36. Stadler H., Lloyd K. G., Bartholini G. Dopaminergic inhibition of striatal cholinergic neurons: synergistic blocking action of gamma-butyrolactone and neuroleptic drugs. Naunyn Schmiedebergs Arch Pharmacol. 1974;283(2):129–134. doi: 10.1007/BF00501139. [DOI] [PubMed] [Google Scholar]
  37. Stamford J. A., Kruk Z. L., Millar J. Actions of dopamine antagonists on stimulated striatal and limbic dopamine release: an in vivo voltammetric study. Br J Pharmacol. 1988 Jul;94(3):924–932. doi: 10.1111/j.1476-5381.1988.tb11605.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tschanz J. T., Rebec G. V. Atypical antipsychotic drugs block selective components of amphetamine-induced stereotypy. Pharmacol Biochem Behav. 1988 Nov;31(3):519–522. doi: 10.1016/0091-3057(88)90225-0. [DOI] [PubMed] [Google Scholar]
  39. Westerink B. H., Korf J. Influence of drugs on striatal and limbic homovanillic acid concentration in the rat brain. Eur J Pharmacol. 1975 Aug;33(1):31–40. doi: 10.1016/0014-2999(75)90134-x. [DOI] [PubMed] [Google Scholar]
  40. Westerink B. H., de Boer P., Damsma G. Dopamine-acetylcholine interaction in the striatum studied by microdialysis in the awake rat: some methodological aspects. J Neurosci Methods. 1990 Sep;34(1-3):117–124. doi: 10.1016/0165-0270(90)90049-l. [DOI] [PubMed] [Google Scholar]
  41. de Belleroche J. S., Gardiner I. M. Cholinergic action in the nucleus accumbens: modulation of dopamine and acetylcholine release. Br J Pharmacol. 1982 Feb;75(2):359–365. doi: 10.1111/j.1476-5381.1982.tb08794.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. de JONGE M., FUNCKE A. B. Sinistrotorsion in guinea pigs as a method of screening central anticholinergic activity. Arch Int Pharmacodyn Ther. 1962 Jun 1;137:375–382. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES