Abstract
The mechanism of leukemogenesis and persistent lymphocytosis (PL; benign expansion of B lymphocytes) in cattle infected with bovine leukemia virus (BLV; a retrovirus closely related to human T-cell leukemia virus type 1) is unknown; however, the immune system likely plays an important role in controlling the outcome of infection. In this study, we compared T-cell competence in serologically positive alymphocytotic (AL) animals with T-cell functions in animals with progressive stages of infection, PL and tumor bearing (TB). Dramatic differences were observed in lymphocyte proliferation to recombinant proteins encoded by BLV gag (p12, p15, and p24) and env (gp30, and gp51) genes in different disease stages. Lymphocytes from AL cattle recognized an average of three of five recombinant proteins per animal. Expansion of antigen pulsed lymphocytes in interleukin-2 increased protein recognition to almost five per animal. In contrast, lymphocytes from PL and TB animals failed to recognize any BLV recombinant proteins. Short-term T-cell cultures from the PL group expanded in interleukin-2, as well as the PL and TB cells cultured in indomethacin (3 to 6 microg/ml), increased the average of recognized proteins per animal to one. Cells proliferating to BLV antigens were CD4+ T lymphocytes, as shown by cell depletion studies. The positive effect of indomethacin suggests involvement of prostaglandin E2 as a negative regulatory factor in the later stages of disease. Thus, for the first time, advancing stages of BLV infection were correlated with decreased T-cell competence, providing deeper insight into pathogenesis of retroviral infections.
Full Text
The Full Text of this article is available as a PDF (272.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abt D. A., Marshak R. R., Kulp H. W., Pollock R. J., Jr Studies on the relationship between lymphocytosis and bovine leukosis. Bibl Haematol. 1970;(36):527–536. doi: 10.1159/000391747. [DOI] [PubMed] [Google Scholar]
- Altaner C., Ban J., Altanerova V., Janik V. Protective vaccination against bovine leukaemia virus infection by means of cell-derived vaccine. Vaccine. 1991 Dec;9(12):889–895. doi: 10.1016/0264-410x(91)90009-u. [DOI] [PubMed] [Google Scholar]
- Betz M., Fox B. S. Prostaglandin E2 inhibits production of Th1 lymphokines but not of Th2 lymphokines. J Immunol. 1991 Jan 1;146(1):108–113. [PubMed] [Google Scholar]
- Bex F., Bruck C., Mammerickx M., Portetelle D., Ghysdael J., Cleuter Y., Leclercq M., Dekegel D., Burny A. Humoral antibody response to bovine leukemia virus infection in cattle and sheep. Cancer Res. 1979 Mar;39(3):1118–1123. [PubMed] [Google Scholar]
- Birkebak T. A., Palmer G. H., Davis W. C., Knowles D. P., McElwain T. F. Association of GP51 expression and persistent CD5+ B-lymphocyte expansion with lymphomagenesis in bovine leukemia virus infected sheep. Leukemia. 1994 Nov;8(11):1890–1899. [PubMed] [Google Scholar]
- Brenner J., Van-Haam M., Savir D., Trainin Z. The implication of BLV infection in the productivity, reproductive capacity and survival rate of a dairy cow. Vet Immunol Immunopathol. 1989 Oct;22(3):299–305. doi: 10.1016/0165-2427(89)90017-2. [DOI] [PubMed] [Google Scholar]
- Callebaut I., Vonèche V., Mager A., Fumière O., Krchnak V., Merza M., Zavada J., Mammerickx M., Burny A., Portetelle D. Mapping of B-neutralizing and T-helper cell epitopes on the bovine leukemia virus external glycoprotein gp51. J Virol. 1993 Sep;67(9):5321–5327. doi: 10.1128/jvi.67.9.5321-5327.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carmichael A., Jin X., Sissons P., Borysiewicz L. Quantitative analysis of the human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T lymphocyte (CTL) response at different stages of HIV-1 infection: differential CTL responses to HIV-1 and Epstein-Barr virus in late disease. J Exp Med. 1993 Feb 1;177(2):249–256. doi: 10.1084/jem.177.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clerici M., Stocks N. I., Zajac R. A., Boswell R. N., Lucey D. R., Via C. S., Shearer G. M. Detection of three distinct patterns of T helper cell dysfunction in asymptomatic, human immunodeficiency virus-seropositive patients. Independence of CD4+ cell numbers and clinical staging. J Clin Invest. 1989 Dec;84(6):1892–1899. doi: 10.1172/JCI114376. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cockerell G. L., Rovnak J. The correlation between the direct and indirect detection of bovine leukemia virus infection in cattle. Leuk Res. 1988;12(6):465–469. doi: 10.1016/0145-2126(88)90112-9. [DOI] [PubMed] [Google Scholar]
- Ferrer J. F., Marshak R. R., Abt D. A., Kenyon S. J. Persistent lymphocytosis in cattle: its cause, nature and relation to lymphosarcoma. Ann Rech Vet. 1978;9(4):851–857. [PubMed] [Google Scholar]
- Foley P., Kazazi F., Biti R., Sorrell T. C., Cunningham A. L. HIV infection of monocytes inhibits the T-lymphocyte proliferative response to recall antigens, via production of eicosanoids. Immunology. 1992 Mar;75(3):391–397. [PMC free article] [PubMed] [Google Scholar]
- Gatei M. H., Good M. F., Daniel R. C., Lavin M. F. T-cell responses to highly conserved CD4 and CD8 epitopes on the outer membrane protein of bovine leukemia virus: relevance to vaccine development. J Virol. 1993 Apr;67(4):1796–1802. doi: 10.1128/jvi.67.4.1796-1802.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gatei M. H., Naif H. M., Kumar S., Boyle D. B., Daniel R. C., Good M. F., Lavin M. F. Protection of sheep against bovine leukemia virus (BLV) infection by vaccination with recombinant vaccinia viruses expressing BLV envelope glycoproteins: correlation of protection with CD4 T-cell response to gp51 peptide 51-70. J Virol. 1993 Apr;67(4):1803–1810. doi: 10.1128/jvi.67.4.1803-1810.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghysdael J., Kettmann R., Burny A. Translation of bovine leukemia virus genome information in heterologous protein synthesizing systems programmed with virion RNA and in cell-lines persistently infected by BLV. Ann Rech Vet. 1978;9(4):627–634. [PubMed] [Google Scholar]
- Greenberg P. D., Cheever M. A., Fefer A. Eradication of disseminated murine leukemia by chemoimmunotherapy with cyclophosphamide and adoptively transferred immune syngeneic Lyt-1+2- lymphocytes. J Exp Med. 1981 Sep 1;154(3):952–963. doi: 10.1084/jem.154.3.952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haas G., David R., Frank R., Gausepohl H., Devaux C., Claverie J. M., Pierres M. Identification of a major human immunodeficiency virus-1 reverse transcriptase epitope recognized by mouse CD4+ T lymphocytes. Eur J Immunol. 1991 Jun;21(6):1371–1377. doi: 10.1002/eji.1830210607. [DOI] [PubMed] [Google Scholar]
- Haas L., Divers T., Casey J. W. Bovine leukemia virus gene expression in vivo. J Virol. 1992 Oct;66(10):6223–6225. doi: 10.1128/jvi.66.10.6223-6225.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hager D. A., Burgess R. R. Elution of proteins from sodium dodecyl sulfate-polyacrylamide gels, removal of sodium dodecyl sulfate, and renaturation of enzymatic activity: results with sigma subunit of Escherichia coli RNA polymerase, wheat germ DNA topoisomerase, and other enzymes. Anal Biochem. 1980 Nov 15;109(1):76–86. doi: 10.1016/0003-2697(80)90013-5. [DOI] [PubMed] [Google Scholar]
- Haraguchi S., Good R. A., Day N. K. Immunosuppressive retroviral peptides: cAMP and cytokine patterns. Immunol Today. 1995 Dec;16(12):595–603. doi: 10.1016/0167-5699(95)80083-2. [DOI] [PubMed] [Google Scholar]
- Hare W. C., Soulsby E. J., Abt D. A. Bovine trypanosomiasis and lymphocytosis parallel studies. Bibl Haematol. 1970;(36):504–517. doi: 10.1159/000391745. [DOI] [PubMed] [Google Scholar]
- Hosmalin A., Clerici M., Houghten R., Pendleton C. D., Flexner C., Lucey D. R., Moss B., Germain R. N., Shearer G. M., Berzofsky J. A. An epitope in human immunodeficiency virus 1 reverse transcriptase recognized by both mouse and human cytotoxic T lymphocytes. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2344–2348. doi: 10.1073/pnas.87.6.2344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howard C. J., Naessens J. Summary of workshop findings for cattle (tables 1 and 2). Vet Immunol Immunopathol. 1993 Nov;39(1-3):25–47. doi: 10.1016/0165-2427(93)90161-v. [DOI] [PubMed] [Google Scholar]
- Jensen W. A., Rovnak J., Cockerell G. L. In vivo transcription of the bovine leukemia virus tax/rex region in normal and neoplastic lymphocytes of cattle and sheep. J Virol. 1991 May;65(5):2484–2490. doi: 10.1128/jvi.65.5.2484-2490.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelso A. Th1 and Th2 subsets: paradigms lost? Immunol Today. 1995 Aug;16(8):374–379. doi: 10.1016/0167-5699(95)80004-2. [DOI] [PubMed] [Google Scholar]
- Kenyon S. J., Piper C. E. Cellular basis of persistent lymphocytosis in cattle infected with bovine leukemia virus. Infect Immun. 1977 Jun;16(3):891–897. doi: 10.1128/iai.16.3.891-897.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kettmann R., Cleuter Y., Mammerickx M., Meunier-Rotival M., Bernardi G., Burny A., Chantrenne H. Genomic integration of bovine leukemia provirus: comparison of persistent lymphocytosis with lymph node tumor form of enzootic. Proc Natl Acad Sci U S A. 1980 May;77(5):2577–2581. doi: 10.1073/pnas.77.5.2577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kono Y., Arai K., Sentsui H., Matsukawa S., Itohara S. Protection against bovine leukemia virus infection in sheep by active and passive immunization. Nihon Juigaku Zasshi. 1986 Feb;48(1):117–125. doi: 10.1292/jvms1939.48.117. [DOI] [PubMed] [Google Scholar]
- Lane H. C., Depper J. M., Greene W. C., Whalen G., Waldmann T. A., Fauci A. S. Qualitative analysis of immune function in patients with the acquired immunodeficiency syndrome. Evidence for a selective defect in soluble antigen recognition. N Engl J Med. 1985 Jul 11;313(2):79–84. doi: 10.1056/NEJM198507113130204. [DOI] [PubMed] [Google Scholar]
- Leclerc J. C., Cantor H. T cell-mediated immunity to oncornavirus-induced tumors. II. Ability of different T cell sets to prevent tumor growth in vivo. J Immunol. 1980 Feb;124(2):851–854. [PubMed] [Google Scholar]
- Mager A., Masengo R., Mammerickx M., Letesson J. J. T cell proliferative response to bovine leukaemia virus (BLV): identification of T cell epitopes on the major core protein (p24) in BLV-infected cattle with normal haematological values. J Gen Virol. 1994 Sep;75(Pt 9):2223–2231. doi: 10.1099/0022-1317-75-9-2223. [DOI] [PubMed] [Google Scholar]
- Matheise J. P., Delcommenne M., Mager A., Didembourg C. H., Letesson J. J. CD5+ B cells from bovine leukemia virus infected cows are activated cycling cells responsive to interleukin 2. Leukemia. 1992 Apr;6(4):304–309. [PubMed] [Google Scholar]
- Matloubian M., Concepcion R. J., Ahmed R. CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J Virol. 1994 Dec;68(12):8056–8063. doi: 10.1128/jvi.68.12.8056-8063.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mirsky M. L., Da Y., Lewin H. A. Detection of bovine leukemia virus proviral DNA in individual cells. PCR Methods Appl. 1993 May;2(4):333–340. doi: 10.1101/gr.2.4.333. [DOI] [PubMed] [Google Scholar]
- Neal Z. C., Splitter G. A. Picornavirus-specific CD4+ T lymphocytes possessing cytolytic activity confer protection in the absence of prophylactic antibodies. J Virol. 1995 Aug;69(8):4914–4923. doi: 10.1128/jvi.69.8.4914-4923.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohishi K., Suzuki H., Yamamoto T., Maruyama T., Miki K., Ikawa Y., Numakunai S., Okada K., Ohshima K., Sugimoto M. Protective immunity against bovine leukaemia virus (BLV) induced in carrier sheep by inoculation with a vaccinia virus-BLV env recombinant: association with cell-mediated immunity. J Gen Virol. 1991 Aug;72(Pt 8):1887–1892. doi: 10.1099/0022-1317-72-8-1887. [DOI] [PubMed] [Google Scholar]
- Ohishi K., Suzuki H., Yasutomi Y., Onuma M., Okada K., Numakunai S., Ohshima K., Ikawa Y., Sugimoto M. Augmentation of bovine leukemia virus (BLV)-specific lymphocyte proliferation responses in ruminants by inoculation with BLV env-recombinant vaccinia virus: their role in the suppression of BLV replication. Microbiol Immunol. 1992;36(12):1317–1323. doi: 10.1111/j.1348-0421.1992.tb02133.x. [DOI] [PubMed] [Google Scholar]
- Onuma M., Hodatsu T., Yamamoto S., Higashihara M., Masu S., Mikami T., Izawa H. Protection by vaccination against bovine leukemia virus infection in sheep. Am J Vet Res. 1984 Jun;45(6):1212–1215. [PubMed] [Google Scholar]
- Orlik O., Ban J., Gieciova E., Altanerova V., Altaner C. Two immunodominant regions revealed by monoclonal antibodies on the main structural protein p24 of bovine leukemia virus. Viral Immunol. 1993 Winter;6(4):245–254. doi: 10.1089/vim.1993.6.245. [DOI] [PubMed] [Google Scholar]
- Orlík O., Bán J., Gieciová E., Altanerová V., Altaner C. Preparation and characterization of monoclonal antibodies directed against glycoproteins of bovine leukaemia virus. Acta Virol. 1993 Oct;37(5):377–387. [PubMed] [Google Scholar]
- Phipps R. P., Stein S. H., Roper R. L. A new view of prostaglandin E regulation of the immune response. Immunol Today. 1991 Oct;12(10):349–352. doi: 10.1016/0167-5699(91)90064-Z. [DOI] [PubMed] [Google Scholar]
- Portetelle D., Limbach K., Burny A., Mammerickx M., Desmettre P., Riviere M., Zavada J., Paoletti E. Recombinant vaccinia virus expression of the bovine leukaemia virus envelope gene and protection of immunized sheep against infection. Vaccine. 1991 Mar;9(3):194–200. doi: 10.1016/0264-410x(91)90153-w. [DOI] [PubMed] [Google Scholar]
- Pyeon D., O'Reilly K. L., Splitter G. A. Increased interleukin-10 mRNA expression in tumor-bearing or persistently lymphocytotic animals infected with bovine leukemia virus. J Virol. 1996 Aug;70(8):5706–5710. doi: 10.1128/jvi.70.8.5706-5710.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sagata N., Yasunaga T., Tsuzuku-Kawamura J., Ohishi K., Ogawa Y., Ikawa Y. Complete nucleotide sequence of the genome of bovine leukemia virus: its evolutionary relationship to other retroviruses. Proc Natl Acad Sci U S A. 1985 Feb;82(3):677–681. doi: 10.1073/pnas.82.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz I., Bensaid A., Polack B., Perrin B., Berthelemy M., Levy D. In vivo leukocyte tropism of bovine leukemia virus in sheep and cattle. J Virol. 1994 Jul;68(7):4589–4596. doi: 10.1128/jvi.68.7.4589-4596.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz I., Lévy D. Pathobiology of bovine leukemia virus. Vet Res. 1994;25(6):521–536. [PubMed] [Google Scholar]
- Sordillo L. M., Hicks C. R., Pighetti G. M. Altered interleukin-2 production by lymphocyte populations from bovine leukemia virus-infected cattle. Proc Soc Exp Biol Med. 1994 Dec;207(3):268–273. doi: 10.3181/00379727-207-43815. [DOI] [PubMed] [Google Scholar]
- Stone D. M., McElwain T. F., Davis W. C. Enhanced B-lymphocyte expression of IL-2R alpha associated with T lymphocytosis in BLV-infected persistently lymphocytotic cows. Leukemia. 1994 Jun;8(6):1057–1061. [PubMed] [Google Scholar]
- Subramanyam M., Gutheil W. G., Bachovchin W. W., Huber B. T. Mechanism of HIV-1 Tat induced inhibition of antigen-specific T cell responsiveness. J Immunol. 1993 Mar 15;150(6):2544–2553. [PubMed] [Google Scholar]
- Thurmond M. C., Carter R. L., Picanso J. P., Stralka K. Upper-normal prediction limits of lymphocyte counts for cattle not infected with bovine leukemia virus. Am J Vet Res. 1990 Mar;51(3):466–470. [PubMed] [Google Scholar]
- Thurmond M. C., Holmberg C. H., Picanso J. P. Antibodies to bovine leukemia virus and presence of malignant lymphoma in slaughtered California dairy cattle. J Natl Cancer Inst. 1985 Mar;74(3):711–714. [PubMed] [Google Scholar]
- Xu A., van Eijk M. J., Park C., Lewin H. A. Polymorphism in BoLA-DRB3 exon 2 correlates with resistance to persistent lymphocytosis caused by bovine leukemia virus. J Immunol. 1993 Dec 15;151(12):6977–6985. [PubMed] [Google Scholar]
- Yodoi J., Uchiyama T. Diseases associated with HTLV-I: virus, IL-2 receptor dysregulation and redox regulation. Immunol Today. 1992 Oct;13(10):405–411. doi: 10.1016/0167-5699(92)90091-K. [DOI] [PubMed] [Google Scholar]
- van der Pouw Kraan T. C., Boeije L. C., Smeenk R. J., Wijdenes J., Aarden L. A. Prostaglandin-E2 is a potent inhibitor of human interleukin 12 production. J Exp Med. 1995 Feb 1;181(2):775–779. doi: 10.1084/jem.181.2.775. [DOI] [PMC free article] [PubMed] [Google Scholar]