Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Sep;104(1):117–122. doi: 10.1111/j.1476-5381.1991.tb12394.x

Effects of adenosine 3':5'-cyclic monophosphate and guanine nucleotides on calcium-evoked ACTH release from electrically permeabilized AtT-20 cells.

S Guild 1
PMCID: PMC1908274  PMID: 1664757

Abstract

1. The mouse AtT-20/D16-16 anterior pituitary tumour cell line was used as a model system for the investigation of adenosine 3':5'-cyclic monophosphate (cyclic AMP)-mediated enhancement of calcium-evoked adrenocorticotrophin (ACTH) secretion. 2. AtT-20 cells were permeabilized by subjecting the cells to intense electric fields. Exposure of permeabilized cells to calcium (1 mM) in the external medium significantly stimulated ACTH secretion over the first 20 min of exposure. This calcium-stimulated ACTH secretion was dependent upon the presence of MgATP (5 mM). 3. The amount of ACTH secreted, in a 20 min incubation at 37 degrees C, from permeabilized cells depended upon the free calcium concentration in the permeabilization medium. Calcium stimulated ACTH secretion from permeabilized cells in the concentration range of 10(-7)-10(-5) M (half maximal = 7 x 10(-7) M). Cyclic AMP(10(-4) M) increased the amount of ACTH secreted at each effective concentration of calcium. However, cyclic AMP did not alter the potency of calcium as a stimulant of ACTH secretion. 4. Guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S, 10(-4) M) stimulated ACTH secretion from permeabilized cells in the absence of calcium and was additive with calcium-evoked ACTH secretion up to a maximum which could be stimulated by calcium acting singly. Guanosine 5'-O-(2-thiodiphosphate) (GDP-beta-S, 10(-4) M) inhibited calcium-evoked ACTH secretion from permeabilized cells. 5. GTP-gamma-S stimulated ACTH secretion from permeabilized cells in a concentration-dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Affolter H., Sigel E. A simple system for the measurement of ion activities with solvent polymeric membrane electrodes. Anal Biochem. 1979 Sep 1;97(2):315–319. doi: 10.1016/0003-2697(79)90078-2. [DOI] [PubMed] [Google Scholar]
  2. Aguilera G., Harwood J. P., Wilson J. X., Morell J., Brown J. H., Catt K. J. Mechanisms of action of corticotropin-releasing factor and other regulators of corticotropin release in rat pituitary cells. J Biol Chem. 1983 Jul 10;258(13):8039–8045. [PubMed] [Google Scholar]
  3. Axelrod J., Reisine T. D. Stress hormones: their interaction and regulation. Science. 1984 May 4;224(4648):452–459. doi: 10.1126/science.6143403. [DOI] [PubMed] [Google Scholar]
  4. Bar-Sagi D., Feramisco J. R. Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins. Science. 1986 Sep 5;233(4768):1061–1068. doi: 10.1126/science.3090687. [DOI] [PubMed] [Google Scholar]
  5. Barbacid M. ras genes. Annu Rev Biochem. 1987;56:779–827. doi: 10.1146/annurev.bi.56.070187.004023. [DOI] [PubMed] [Google Scholar]
  6. Barrowman M. M., Cockcroft S., Gomperts B. D. Two roles for guanine nucleotides in the stimulus-secretion sequence of neutrophils. Nature. 1986 Feb 6;319(6053):504–507. doi: 10.1038/319504a0. [DOI] [PubMed] [Google Scholar]
  7. Bishop J. F., Farah J. M., Patel J., O'Donohue T. L. Activation of distinct second messenger systems in anterior pituitary corticotrophic tumor cells alters the phosphorylation states of both shared and distinct cytosolic proteins. Mol Cell Endocrinol. 1987 Jul;52(1-2):17–26. doi: 10.1016/0303-7207(87)90092-x. [DOI] [PubMed] [Google Scholar]
  8. Bittner M. A., Holz R. W., Neubig R. R. Guanine nucleotide effects on catecholamine secretion from digitonin-permeabilized adrenal chromaffin cells. J Biol Chem. 1986 Aug 5;261(22):10182–10188. [PubMed] [Google Scholar]
  9. Bourne H. R. Do GTPases direct membrane traffic in secretion? Cell. 1988 Jun 3;53(5):669–671. doi: 10.1016/0092-8674(88)90081-5. [DOI] [PubMed] [Google Scholar]
  10. Bourne H. R., Sanders D. A., McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature. 1990 Nov 8;348(6297):125–132. doi: 10.1038/348125a0. [DOI] [PubMed] [Google Scholar]
  11. Burgoyne R. D. G proteins: control of exocytosis. Nature. 1987 Jul 9;328(6126):112–113. doi: 10.1038/328112a0. [DOI] [PubMed] [Google Scholar]
  12. Douglas W. W. Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br J Pharmacol. 1968 Nov;34(3):451–474. doi: 10.1111/j.1476-5381.1968.tb08474.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
  14. Goud B., Salminen A., Walworth N. C., Novick P. J. A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast. Cell. 1988 Jun 3;53(5):753–768. doi: 10.1016/0092-8674(88)90093-1. [DOI] [PubMed] [Google Scholar]
  15. Guild S., Frey E. A., Pocotte S. L., Kebabian J. W. Adenosine 3',5'-cyclic monophosphate-mediated enhancement of calcium-evoked prolactin release from electrically permeabilised 7315c tumour cells. Br J Pharmacol. 1988 Jul;94(3):737–744. doi: 10.1111/j.1476-5381.1988.tb11583.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Guild S., Itoh Y., Kebabian J. W., Luini A., Reisine T. Forskolin enhances basal and potassium-evoked hormone release from normal and malignant pituitary tissue: the role of calcium. Endocrinology. 1986 Jan;118(1):268–279. doi: 10.1210/endo-118-1-268. [DOI] [PubMed] [Google Scholar]
  17. Guild S., Reisine T. Molecular mechanisms of corticotropin-releasing factor stimulation of calcium mobilization and adrenocorticotropin release from anterior pituitary tumor cells. J Pharmacol Exp Ther. 1987 Apr;241(1):125–130. [PubMed] [Google Scholar]
  18. Heisler S., Reisine T. Forskolin stimulates adenylate cyclase activity, cyclic AMP accumulation, and adrenocorticotropin secretion from mouse anterior pituitary tumor cells. J Neurochem. 1984 Jun;42(6):1659–1666. doi: 10.1111/j.1471-4159.1984.tb12757.x. [DOI] [PubMed] [Google Scholar]
  19. Howell T. W., Cockcroft S., Gomperts B. D. Essential synergy between Ca2+ and guanine nucleotides in exocytotic secretion from permeabilized rat mast cells. J Cell Biol. 1987 Jul;105(1):191–197. doi: 10.1083/jcb.105.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Knight D. E., Baker P. F. Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields. J Membr Biol. 1982;68(2):107–140. doi: 10.1007/BF01872259. [DOI] [PubMed] [Google Scholar]
  21. Knight D. E., Scrutton M. C. Gaining access to the cytosol: the technique and some applications of electropermeabilization. Biochem J. 1986 Mar 15;234(3):497–506. doi: 10.1042/bj2340497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lazarowski E. R., Lacal J. C., Lapetina E. G. Agonist-induced phosphorylation of an immunologically ras-related protein in human erythroleukemia cells. Biochem Biophys Res Commun. 1989 Jun 30;161(3):972–978. doi: 10.1016/0006-291x(89)91338-7. [DOI] [PubMed] [Google Scholar]
  23. Litvin Y., PasMantier R., Fleischer N., Erlichman J. Hormonal activation of the cAMP-dependent protein kinases in AtT20 cells. Preferential activation of protein kinase I by corticotropin releasing factor, isoproterenol, and forskolin. J Biol Chem. 1984 Aug 25;259(16):10296–10302. [PubMed] [Google Scholar]
  24. Luini A., De Matteis M. A. Dual regulation of ACTH secretion by guanine nucleotides in permeabilized AtT-20 cells. Cell Mol Neurobiol. 1988 Mar;8(1):129–138. doi: 10.1007/BF00712918. [DOI] [PubMed] [Google Scholar]
  25. Luini A., De Matteis M. A. Evidence that receptor-linked G protein inhibits exocytosis by a post-second-messenger mechanism in AtT-20 cells. J Neurochem. 1990 Jan;54(1):30–38. doi: 10.1111/j.1471-4159.1990.tb13279.x. [DOI] [PubMed] [Google Scholar]
  26. Luini A., Lewis D., Guild S., Corda D., Axelrod J. Hormone secretagogues increase cytosolic calcium by increasing cAMP in corticotropin-secreting cells. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8034–8038. doi: 10.1073/pnas.82.23.8034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Miyazaki K., Reisine T., Kebabian J. W. Adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase activity in rodent pituitary tissue: possible role in cAMP-dependent hormone secretion. Endocrinology. 1984 Nov;115(5):1933–1945. doi: 10.1210/endo-115-5-1933. [DOI] [PubMed] [Google Scholar]
  28. Nagata K., Nagao S., Nozawa Y. Low Mr GTP-binding proteins in human platelets: cyclic AMP-dependent protein kinase phosphorylates m22KG(I) in membrane but not c21KG in cytosol. Biochem Biophys Res Commun. 1989 Apr 14;160(1):235–242. doi: 10.1016/0006-291x(89)91646-x. [DOI] [PubMed] [Google Scholar]
  29. PORTZEHL H., CALDWELL P. C., RUEEGG J. C. THE DEPENDENCE OF CONTRACTION AND RELAXATION OF MUSCLE FIBRES FROM THE CRAB MAIA SQUINADO ON THE INTERNAL CONCENTRATION OF FREE CALCIUM IONS. Biochim Biophys Acta. 1964 May 25;79:581–591. doi: 10.1016/0926-6577(64)90224-4. [DOI] [PubMed] [Google Scholar]
  30. Reisine T., Guild S. Pertussis toxin blocks somatostatin inhibition of calcium mobilization and reduces the affinity of somatostatin receptors for agonists. J Pharmacol Exp Ther. 1985 Dec;235(3):551–557. [PubMed] [Google Scholar]
  31. Reisine T. Somatostatin desensitization: loss of the ability of somatostatin to inhibit cyclic AMP accumulation and adrenocorticotropin hormone release. J Pharmacol Exp Ther. 1984 Apr;229(1):14–20. [PubMed] [Google Scholar]
  32. Rougon G., Barbet J., Reisine T. Protein phosphorylation induced by phorbol esters and cyclic AMP in anterior pituitary cells: possible role in adrenocorticotropin release and synthesis. J Neurochem. 1989 Apr;52(4):1270–1278. doi: 10.1111/j.1471-4159.1989.tb01875.x. [DOI] [PubMed] [Google Scholar]
  33. Salminen A., Novick P. J. A ras-like protein is required for a post-Golgi event in yeast secretion. Cell. 1987 May 22;49(4):527–538. doi: 10.1016/0092-8674(87)90455-7. [DOI] [PubMed] [Google Scholar]
  34. Segev N., Mulholland J., Botstein D. The yeast GTP-binding YPT1 protein and a mammalian counterpart are associated with the secretion machinery. Cell. 1988 Mar 25;52(6):915–924. doi: 10.1016/0092-8674(88)90433-3. [DOI] [PubMed] [Google Scholar]
  35. Tsien R. Y., Rink T. J. Neutral carrier ion-selective microelectrodes for measurement of intracellular free calcium. Biochim Biophys Acta. 1980 Jul;599(2):623–638. doi: 10.1016/0005-2736(80)90205-9. [DOI] [PubMed] [Google Scholar]
  36. Vallar L., Biden T. J., Wollheim C. B. Guanine nucleotides induce Ca2+-independent insulin secretion from permeabilized RINm5F cells. J Biol Chem. 1987 Apr 15;262(11):5049–5056. [PubMed] [Google Scholar]
  37. Yamamoto T., Furuki Y., Guild S., Kebabian J. W. Adenosine 3',5'-cyclic monophosphate stimulates secretion of alpha-melanocyte-stimulating hormone from permeabilized cells of the intermediate lobe of the rat pituitary gland. Biochem Biophys Res Commun. 1987 Mar 30;143(3):1076–1084. doi: 10.1016/0006-291x(87)90362-7. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES