Abstract
1. The kinetics of action of 17 structurally related NMDA receptor competitive antagonists were measured under voltage clamp in mouse hippocampal neurones. Analysis of the response to rapid changes in antagonist concentration during constant application of agonist was used to estimate microscopic association (kon) and dissociation (koff) rate constants for antagonist binding, assuming a two-equivalent site model for competitive antagonism. Dose-inhibition curves were analysed to estimate antagonist equilibrium dissociation constants. 2. For a series of 11 omega-phosphono, alpha-amino acids kon and koff varied 26 and 107 fold respectively. Rapid association and dissociation rate constants were obtained for flexible antagonist molecules such as D-2-amino-7-phosphonoheptanoic acid (D-AP7): kon 1.4 x 10(7) M-1 s-1; koff 20.3 s-1. For conformationally restrained molecules such as 3S,4aR,6S,8aR-6-phosphonomethyl-decahydroisoquinoline- 3-carboxylic acid (LY 235959), association and dissociation rate constants were much slower: kon 1.1 x 10(6) M-1 s-1; koff 0.2 s-1. For the D- and L-isomers of 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) estimates for kon were similar, but for the L-isomer koff was 10 fold faster than for the D-isomer. 3. For 2-amino-5-phosphonopentanoic acid (AP5) and its piperidine derivative cis-4-(phosphonomethyl)piperidine-2-carboxylic acid (CGS 19755), an increase in chain length of two methylene groups between the omega-phosphono and alpha-carboxylate moieties caused a 1.6 to 1.8 fold decrease in kon with little change in koff. In contrast, for AP5, CPP and its omega-carboxylate analogue, addition of a double bond close to the phosphonate moiety caused a 1.3 to 1.6 fold increase in kon. 4. For antagonists with an omega-tetrazole moiety, kon and koff were 2.8-4.6 times faster than for the parent omega-phosphono compounds. A similar, but smaller increase in kon and koff was observed for antagonists with an omega-carboxylate moiety. 5. The slow kinetics of action of potent NMDA receptor antagonists were not an artefact of buffered diffusion. In neurones equilibrated with 200 microM D-AP7, 2 microM LY 235959 and 10 microM NMDA, a transient agonist response was recorded following a rapid switch to D-AP7-free solution. This can only be explained by differences in the binding kinetics of AP7 and LY 235959, since at equilibrium, with these concentrations, either antagonist essentially eliminates the agonist response to 10 microM NMDA.(ABSTRACT TRUNCATED AT 400 WORDS)
Full text
PDF














Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armstrong D. L., Lester H. A. The kinetics of tubocurarine action and restricted diffusion within the synaptic cleft. J Physiol. 1979 Sep;294:365–386. doi: 10.1113/jphysiol.1979.sp012935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benveniste M., Mayer M. L. Kinetic analysis of antagonist action at N-methyl-D-aspartic acid receptors. Two binding sites each for glutamate and glycine. Biophys J. 1991 Mar;59(3):560–573. doi: 10.1016/S0006-3495(91)82272-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benveniste M., Mienville J. M., Sernagor E., Mayer M. L. Concentration-jump experiments with NMDA antagonists in mouse cultured hippocampal neurons. J Neurophysiol. 1990 Jun;63(6):1373–1384. doi: 10.1152/jn.1990.63.6.1373. [DOI] [PubMed] [Google Scholar]
- Chenard B. L., Lipinski C. A., Dominy B. W., Mena E. E., Ronau R. T., Butterfield G. C., Marinovic L. C., Pagnozzi M., Butler T. W., Tsang T. A unified approach to systematic isosteric substitution for acidic groups and application to NMDA antagonists related to 2-amino-7-phosphonoheptanoate. J Med Chem. 1990 Mar;33(3):1077–1083. doi: 10.1021/jm00165a030. [DOI] [PubMed] [Google Scholar]
- Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
- Choi D. W. Cerebral hypoxia: some new approaches and unanswered questions. J Neurosci. 1990 Aug;10(8):2493–2501. doi: 10.1523/JNEUROSCI.10-08-02493.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collingridge G. L., Lester R. A. Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev. 1989 Jun;41(2):143–210. [PubMed] [Google Scholar]
- Colquhoun D., Ogden D. C. Activation of ion channels in the frog end-plate by high concentrations of acetylcholine. J Physiol. 1988 Jan;395:131–159. doi: 10.1113/jphysiol.1988.sp016912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies J., Watkins J. C. Actions of D and L forms of 2-amino-5-phosphonovalerate and 2-amino-4-phosphonobutyrate in the cat spinal cord. Brain Res. 1982 Mar 11;235(2):378–386. doi: 10.1016/0006-8993(82)91017-4. [DOI] [PubMed] [Google Scholar]
- Evans R. H., Francis A. A., Jones A. W., Smith D. A., Watkins J. C. The effects of a series of omega-phosphonic alpha-carboxylic amino acids on electrically evoked and excitant amino acid-induced responses in isolated spinal cord preparations. Br J Pharmacol. 1982 Jan;75(1):65–75. doi: 10.1111/j.1476-5381.1982.tb08758.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fagg G. E., Olpe H. R., Pozza M. F., Baud J., Steinmann M., Schmutz M., Portet C., Baumann P., Thedinga K., Bittiger H. CGP 37849 and CGP 39551: novel and potent competitive N-methyl-D-aspartate receptor antagonists with oral activity. Br J Pharmacol. 1990 Apr;99(4):791–797. doi: 10.1111/j.1476-5381.1990.tb13008.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferkany J. W., Kyle D. J., Willets J., Rzeszotarski W. J., Guzewska M. E., Ellenberger S. R., Jones S. M., Sacaan A. I., Snell L. D., Borosky S. Pharmacological profile of NPC 12626, a novel, competitive N-methyl-D-aspartate receptor antagonist. J Pharmacol Exp Ther. 1989 Jul;250(1):100–109. [PubMed] [Google Scholar]
- Harrison N. L., Simmonds M. A. Quantitative studies on some antagonists of N-methyl D-aspartate in slices of rat cerebral cortex. Br J Pharmacol. 1985 Feb;84(2):381–391. doi: 10.1111/j.1476-5381.1985.tb12922.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hays S. J., Bigge C. F., Novak P. M., Drummond J. T., Bobovski T. P., Rice M. J., Johnson G., Brahce L. J., Coughenour L. L. New and versatile approaches to the synthesis of CPP-related competitive NMDA antagonists. Preliminary structure-activity relationships and pharmacological evaluation. J Med Chem. 1990 Oct;33(10):2916–2924. doi: 10.1021/jm00172a037. [DOI] [PubMed] [Google Scholar]
- Henderson G., Johnson J. W., Ascher P. Competitive antagonists and partial agonists at the glycine modulatory site of the mouse N-methyl-D-aspartate receptor. J Physiol. 1990 Nov;430:189–212. doi: 10.1113/jphysiol.1990.sp018288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Honoré T., Davies S. N., Drejer J., Fletcher E. J., Jacobsen P., Lodge D., Nielsen F. E. Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists. Science. 1988 Aug 5;241(4866):701–703. doi: 10.1126/science.2899909. [DOI] [PubMed] [Google Scholar]
- Huettner J. E., Bean B. P. Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1307–1311. doi: 10.1073/pnas.85.4.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hutchison A. J., Williams M., Angst C., de Jesus R., Blanchard L., Jackson R. H., Wilusz E. J., Murphy D. E., Bernard P. S., Schneider J. 4-(Phosphonoalkyl)- and 4-(phosphonoalkenyl)-2-piperidinecarboxylic acids: synthesis, activity at N-methyl-D-aspartic acid receptors, and anticonvulsant activity. J Med Chem. 1989 Sep;32(9):2171–2178. doi: 10.1021/jm00129a025. [DOI] [PubMed] [Google Scholar]
- Long S. K., Smith D. A., Siarey R. J., Evans R. H. Effect of 6-cyano-2,3-dihydroxy-7-nitro-quinoxaline (CNQX) on dorsal root-, NMDA-, kainate- and quisqualate-mediated depolarization of rat motoneurones in vitro. Br J Pharmacol. 1990 Aug;100(4):850–854. doi: 10.1111/j.1476-5381.1990.tb14103.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacDonald J. F., Miljkovic Z., Pennefather P. Use-dependent block of excitatory amino acid currents in cultured neurons by ketamine. J Neurophysiol. 1987 Aug;58(2):251–266. doi: 10.1152/jn.1987.58.2.251. [DOI] [PubMed] [Google Scholar]
- Mayer M. L., Vyklicky L., Jr, Clements J. Regulation of NMDA receptor desensitization in mouse hippocampal neurons by glycine. Nature. 1989 Mar 30;338(6214):425–427. doi: 10.1038/338425a0. [DOI] [PubMed] [Google Scholar]
- Mayer M. L., Vyklicky L., Jr, Westbrook G. L. Modulation of excitatory amino acid receptors by group IIB metal cations in cultured mouse hippocampal neurones. J Physiol. 1989 Aug;415:329–350. doi: 10.1113/jphysiol.1989.sp017724. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monaghan D. T., Olverman H. J., Nguyen L., Watkins J. C., Cotman C. W. Two classes of N-methyl-D-aspartate recognition sites: differential distribution and differential regulation by glycine. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9836–9840. doi: 10.1073/pnas.85.24.9836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy D. E., Hutchison A. J., Hurt S. D., Williams M., Sills M. A. Characterization of the binding of [3H]-CGS 19755: a novel N-methyl-D-aspartate antagonist with nanomolar affinity in rat brain. Br J Pharmacol. 1988 Nov;95(3):932–938. doi: 10.1111/j.1476-5381.1988.tb11723.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olverman H. J., Jones A. W., Mewett K. N., Watkins J. C. Structure/activity relations of N-methyl-D-aspartate receptor ligands as studied by their inhibition of [3H]D-2-amino-5-phosphonopentanoic acid binding in rat brain membranes. Neuroscience. 1988 Jul;26(1):17–31. doi: 10.1016/0306-4522(88)90124-8. [DOI] [PubMed] [Google Scholar]
- Ornstein P. L., Schaus J. M., Chambers J. W., Huser D. L., Leander J. D., Wong D. T., Paschal J. W., Jones N. D., Deeter J. B. Synthesis and pharmacology of a series of 3- and 4-(phosphonoalkyl)pyridine- and -piperidine-2-carboxylic acids. Potent N-methyl-D-aspartate receptor antagonists. J Med Chem. 1989 Apr;32(4):827–833. doi: 10.1021/jm00124a015. [DOI] [PubMed] [Google Scholar]
- Patneau D. K., Mayer M. L. Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-D-aspartate and quisqualate receptors. J Neurosci. 1990 Jul;10(7):2385–2399. doi: 10.1523/JNEUROSCI.10-07-02385.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rang H. P. The kinetics of action of acetylcholine antagonists in smooth muscle. Proc R Soc Lond B Biol Sci. 1966 Apr 19;164(996):488–510. doi: 10.1098/rspb.1966.0045. [DOI] [PubMed] [Google Scholar]
- Sernagor E., Kuhn D., Vyklicky L., Jr, Mayer M. L. Open channel block of NMDA receptor responses evoked by tricyclic antidepressants. Neuron. 1989 Mar;2(3):1221–1227. doi: 10.1016/0896-6273(89)90306-1. [DOI] [PubMed] [Google Scholar]
- Simon R. P., Swan J. H., Griffiths T., Meldrum B. S. Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science. 1984 Nov 16;226(4676):850–852. doi: 10.1126/science.6093256. [DOI] [PubMed] [Google Scholar]
- Thedinga K. H., Benedict M. S., Fagg G. E. The N-methyl-D-aspartate (NMDA) receptor complex: a stoichiometric analysis of radioligand binding domains. Neurosci Lett. 1989 Sep 25;104(1-2):217–222. doi: 10.1016/0304-3940(89)90357-1. [DOI] [PubMed] [Google Scholar]
- Ulbricht W. Kinetics of drug action and equilibrium results at the node of Ranvier. Physiol Rev. 1981 Oct;61(4):785–828. doi: 10.1152/physrev.1981.61.4.785. [DOI] [PubMed] [Google Scholar]
- Verdoorn T. A., Dingledine R. Excitatory amino acid receptors expressed in Xenopus oocytes: agonist pharmacology. Mol Pharmacol. 1988 Sep;34(3):298–307. [PubMed] [Google Scholar]
- Verdoorn T. A., Kleckner N. W., Dingledine R. N-methyl-D-aspartate/glycine and quisqualate/kainate receptors expressed in Xenopus oocytes: antagonist pharmacology. Mol Pharmacol. 1989 Mar;35(3):360–368. [PubMed] [Google Scholar]
- Vyklický L., Jr, Benveniste M., Mayer M. L. Modulation of N-methyl-D-aspartic acid receptor desensitization by glycine in mouse cultured hippocampal neurones. J Physiol. 1990 Sep;428:313–331. doi: 10.1113/jphysiol.1990.sp018214. [DOI] [PMC free article] [PubMed] [Google Scholar]
