Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Sep;104(1):133–138. doi: 10.1111/j.1476-5381.1991.tb12397.x

Changes of quantal transmitter release caused by gadolinium ions at the frog neuromuscular junction.

J Molgó 1, E del Pozo 1, J E Baños 1, D Angaut-Petit 1
PMCID: PMC1908279  PMID: 1686201

Abstract

1. The actions of the trivalent cation, gadolinium (Gd3+), were studied on frog isolated neuromuscular preparations by conventional electrophysiological techniques. 2. Gd3+ (450 microM) applied to normal or formamide-treated cutaneous pectoris nerve-muscle preparations induced, after a short delay, a complete block of neuromuscular transmission. The reversibility of the effect was dependent on the time of exposure. 3. Gd3+ (5-450 microM) had no consistent effect on the resting membrane potential of the muscle fibres. 4. Gd3+ (5-40 microM) applied to preparations equilibrated in solutions containing high Mg2+ and low Ca2+ reduced the mean quantal content of endplate potentials (e.p.ps) in a dose-dependent manner. Under those conditions, 3,4-diaminopyridine (10 microM) consistently reversed the depression of evoked quantal release. 5. The calcium current entering motor nerve terminals, revealed after blocking presynaptic potassium currents with tetraethylammonium (10 mM) in the presence of elevated extracellular Ca2+ (8 mM), was markedly reduced by Gd3+ (0.2-0.5 mM). 6. Gd3+ (40-200 microM) increased the frequency of spontaneous miniature endplate potentials (m.e.p.ps) in junctions bathed either in normal Ringer solution or in a nominally Ca(2+)-free medium supplemented with 0.7 microM tetrodotoxin. This effect may be due to Gd3+ entry into the nerve endings since it is not reversed upon removal of extracellular Gd3+ with chelators (1 mM EGTA or EDTA). Gd3+ also enhanced the frequency of me.p.ps appearing after each nerve stimulus in junctions bathed in a medium containing high Mg2+ and low Ca2+. 7. Gd3+, in concentrations higher than 100 microM, decreased reversibly the amplitude of m.e.p.ps suggesting a postsynaptic action.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
133

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alnaes E., Rahamimoff R. Dual action of praseodymium (Pr3+) on transmitter release at the frog neuromuscular synapse. Nature. 1974 Feb 15;247(5441):478–479. doi: 10.1038/247478a0. [DOI] [PubMed] [Google Scholar]
  2. Anderson A. J., Harvey A. L. Omega-conotoxin does not block the verapamil-sensitive calcium channels at mouse motor nerve terminals. Neurosci Lett. 1987 Nov 23;82(2):177–180. doi: 10.1016/0304-3940(87)90125-x. [DOI] [PubMed] [Google Scholar]
  3. Augustine G. J., Charlton M. P., Smith S. J. Calcium action in synaptic transmitter release. Annu Rev Neurosci. 1987;10:633–693. doi: 10.1146/annurev.ne.10.030187.003221. [DOI] [PubMed] [Google Scholar]
  4. Blioch Z. L., Glagoleva I. M., Liberman E. A., Nenashev V. A. A study of the mechanism of quantal transmitter release at a chemical synapse. J Physiol. 1968 Nov;199(1):11–35. doi: 10.1113/jphysiol.1968.sp008637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bourne G. W., Trifaró J. M. The gadolinium ion: a potent blocker of calcium channels and catecholamine release from cultured chromaffin cells. Neuroscience. 1982 Jul;7(7):1615–1622. doi: 10.1016/0306-4522(82)90019-7. [DOI] [PubMed] [Google Scholar]
  6. Bowen J. M. Effects of rare earths and yttrium on striated muscle and the neuromuscular junction. Can J Physiol Pharmacol. 1972 Jun;50(6):603–611. doi: 10.1139/y72-089. [DOI] [PubMed] [Google Scholar]
  7. Brown D. A., Docherty R. J., McFadzean I. Calcium channels in vertebrate neurons. Experiments on a neuroblastoma hybrid model. Ann N Y Acad Sci. 1989;560:358–372. doi: 10.1111/j.1749-6632.1989.tb24115.x. [DOI] [PubMed] [Google Scholar]
  8. Curtis M. J., Quastel D. M., Saint D. A. Lanthanum as a surrogate for calcium in transmitter release at mouse motor nerve terminals. J Physiol. 1986 Apr;373:243–260. doi: 10.1113/jphysiol.1986.sp016045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Docherty R. J. Gadolinium selectively blocks a component of calcium current in rodent neuroblastoma x glioma hybrid (NG108-15) cells. J Physiol. 1988 Apr;398:33–47. doi: 10.1113/jphysiol.1988.sp017027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dreyer F., Penner R. The actions of presynaptic snake toxins on membrane currents of mouse motor nerve terminals. J Physiol. 1987 May;386:455–463. doi: 10.1113/jphysiol.1987.sp016544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gundersen C. B., Katz B., Miledi R. The antagonism between botulinum toxin and calcium in motor nerve terminals. Proc R Soc Lond B Biol Sci. 1982 Oct 22;216(1204):369–376. doi: 10.1098/rspb.1982.0080. [DOI] [PubMed] [Google Scholar]
  12. Hambly tbd, dos Remedios C. G. Responses of skeletal muscle fibres to lanthanide ions. Dependence of the twitch response on ionic radii. Experientia. 1977 Aug 15;33(8):1042–1044. doi: 10.1007/BF01945959. [DOI] [PubMed] [Google Scholar]
  13. Heuser J., Miledi R. Effects of lanthanum ions on function and structure of frog neuromuscular junctions. Proc R Soc Lond B Biol Sci. 1971 Dec 14;179(1056):247–260. doi: 10.1098/rspb.1971.0096. [DOI] [PubMed] [Google Scholar]
  14. Hevron E., David G., Arnon A., Yaari Y. Acetylcholine modulates two types of presynaptic potassium channels in vertebrate motor nerve terminals. Neurosci Lett. 1986 Dec 3;72(1):87–92. doi: 10.1016/0304-3940(86)90624-5. [DOI] [PubMed] [Google Scholar]
  15. Katz B., Miledi R. The effect of prolonged depolarization on synaptic transfer in the stellate ganglion of the squid. J Physiol. 1971 Jul;216(2):503–512. doi: 10.1113/jphysiol.1971.sp009537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kerr L. M., Yoshikami D. A venom peptide with a novel presynaptic blocking action. Nature. 1984 Mar 15;308(5956):282–284. doi: 10.1038/308282a0. [DOI] [PubMed] [Google Scholar]
  17. Mallart A. Presynaptic currents in frog motor endings. Pflugers Arch. 1984 Jan;400(1):8–13. doi: 10.1007/BF00670529. [DOI] [PubMed] [Google Scholar]
  18. Metral S., Bonneton C., Hort-Legrand C., Reynes J. Dual action of erbium on transmitter release at the frog neuromuscular synapse. Nature. 1978 Feb 23;271(5647):773–775. doi: 10.1038/271773a0. [DOI] [PubMed] [Google Scholar]
  19. Miller R. J. Multiple calcium channels and neuronal function. Science. 1987 Jan 2;235(4784):46–52. doi: 10.1126/science.2432656. [DOI] [PubMed] [Google Scholar]
  20. Muscholl E., Racké K., Traut A. Gadolinium ions inhibit exocytotic vasopressin release from the rat neurohypophysis. J Physiol. 1985 Oct;367:419–434. doi: 10.1113/jphysiol.1985.sp015833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nachshen D. A., Blaustein M. P. The effects of some organic "calcium antagonists" on calcium influx in presynaptic nerve terminals. Mol Pharmacol. 1979 Sep;16(2):576–586. [PubMed] [Google Scholar]
  22. Nachshen D. A. Selectivity of the Ca binding site in synaptosome Ca channels. Inhibition of Ca influx by multivalent metal cations. J Gen Physiol. 1984 Jun;83(6):941–967. doi: 10.1085/jgp.83.6.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sano K., Enomoto K., Maeno T. Effects of synthetic omega-conotoxin, a new type Ca2+ antagonist, on frog and mouse neuromuscular transmission. Eur J Pharmacol. 1987 Sep 11;141(2):235–241. doi: 10.1016/0014-2999(87)90268-8. [DOI] [PubMed] [Google Scholar]
  24. Scheer H. W. Interactions between alpha-latrotoxin and trivalent cations in rat striatal synaptosomal preparations. J Neurochem. 1989 May;52(5):1590–1597. doi: 10.1111/j.1471-4159.1989.tb09213.x. [DOI] [PubMed] [Google Scholar]
  25. Tabti N., Bourret C., Mallart A. Three potassium currents in mouse motor nerve terminals. Pflugers Arch. 1989 Feb;413(4):395–400. doi: 10.1007/BF00584489. [DOI] [PubMed] [Google Scholar]
  26. del Castillo J., Escalona de Motta G. A new method for excitation-contraction uncoupling in frog skeletal muscle. J Cell Biol. 1978 Sep;78(3):782–784. doi: 10.1083/jcb.78.3.782. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES