Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Sep;104(1):190–194. doi: 10.1111/j.1476-5381.1991.tb12406.x

Effect of a 7-day treatment with idazoxan and its 2-methoxy derivative RX 821002 [correction of RX 821001] on alpha 2-adrenoceptors and non-adrenoceptor idazoxan binding sites in rabbits.

M Portillo 1, M Reverte 1, D Langin 1, J M Senard 1, M A Tran 1, M Berlan 1, J L Montastruc 1
PMCID: PMC1908292  PMID: 1686202

Abstract

1. The present study investigates the influence of a 7-day treatment with 2 mg kg-1, s.c., twice daily of RX 821002 (an alpha 2-adrenoceptor antagonist which binds only to alpha 2-adrenoceptors) or idazoxan (alpha 2-antagonist which binds to alpha 2-adrenoceptors and also to non-adrenoceptor idazoxan binding sites: NAIBS) on alpha 2-adrenoceptor (labelled with [3H]-RX 821002) and NAIBS (labelled with [3H]-idazoxan) number in three tissues (adipocytes, colocytes and platelets) in the rabbit. 2. Acute administration of RX 821002 or idazoxan increased plasma non-esterified fatty acids (NEFA) and catecholamine levels with no change in plasma glucose levels. 3. The 7-day treatment with RX 821002 or idazoxan failed to influence food intake, total body weight or perirenal adipose tissue weight. 4. RX 821002 and idazoxan increased the number of [3H]-RX 821002 binding sites in adipose tissue with no change in colocytes or platelets. 5. RX 821002 and idazoxan failed to modify [3H]-idazoxan binding sites on adipocytes and colocytes. No significant [3H]-idazoxan binding was detected on rabbit platelets. 6. The results show that a 7-day treatment with alpha 2-antagonists induces an up-regulation in adipocyte alpha 2-adrenoceptors. In contrast, this phenomenon does not involve all the tissues since colocytes and platelets escape the effects of alpha 2-antagonists. The data suggest a differential regulation of alpha 2-adrenoceptors according to their location. 7. The fact that NAIBS did not vary suggests that alpha 2-adrenoceptors and NAIBS are two different entities.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
190

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berlan M., Lafontan M. Evidence that epinephrine acts preferentially as an antilipolytic agent in abdominal human subcutaneous fat cells: assessment by analysis of beta and alpha 2 adrenoceptor properties. Eur J Clin Invest. 1985 Dec;15(6):341–348. doi: 10.1111/j.1365-2362.1985.tb00282.x. [DOI] [PubMed] [Google Scholar]
  2. Bousquet P., Feldman J., Schwartz J. Central cardiovascular effects of alpha adrenergic drugs: differences between catecholamines and imidazolines. J Pharmacol Exp Ther. 1984 Jul;230(1):232–236. [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Brodde O. E. Homogeneous class of beta-1 adrenergic receptors in rat kidney. Identification by (+/-)-125 iodocyanopindolol binding. Biochem Pharmacol. 1982 May 1;31(9):1743–1747. doi: 10.1016/0006-2952(82)90678-5. [DOI] [PubMed] [Google Scholar]
  5. Carpene C., Berlan M., Lafontan M. Influence of development and reduction of fat stores on the antilipolytic alpha 2-adrenoceptor in hamster adipocytes: comparison with adenosine and beta-adrenergic lipolytic responses. J Lipid Res. 1983 Jun;24(6):766–774. [PubMed] [Google Scholar]
  6. Crampes F., Marceron M., Beauville M., Riviere D., Garrigues M., Berlan M., Lafontan M. Platelet alpha 2-adrenoceptors and adrenergic adipose tissue responsiveness after moderate hypocaloric diet in obese subjects. Int J Obes. 1989;13(1):99–110. [PubMed] [Google Scholar]
  7. Deighton N. M., Brown A. D., Hamilton C. A., Reid J. L. Regulation of adrenergic receptor number following chronic noradrenaline infusion in the rabbit. Naunyn Schmiedebergs Arch Pharmacol. 1988 Nov;338(5):517–522. doi: 10.1007/BF00179323. [DOI] [PubMed] [Google Scholar]
  8. Deighton N. M., Hamilton C. A., Jones C. R., Reid J. L. The effects of chronic administration of adrenaline on the function and number of adrenoceptors in the rabbit. J Cardiovasc Pharmacol. 1988 Sep;12(3):332–337. doi: 10.1097/00005344-198809000-00011. [DOI] [PubMed] [Google Scholar]
  9. Estan L., Senard J. M., Tran M. A., Montastruc J. L., Berlan M. Reserpine induces vascular alpha 2-adrenergic supersensitivity and platelet alpha 2-adrenoceptor up-regulation in dog. Br J Pharmacol. 1990 Oct;101(2):329–336. doi: 10.1111/j.1476-5381.1990.tb12710.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fortin T. L., Sundaresan P. R. Reserpine but not surgical denervation regulates rat renal beta-adrenergic receptors. Am J Physiol. 1989 Apr;256(4 Pt 2):F532–F539. doi: 10.1152/ajprenal.1989.256.4.F532. [DOI] [PubMed] [Google Scholar]
  11. Galitzky J., Rivière D., Tran M. A., Montastruc J. L., Berlan M. Pharmacodynamic effects of chronic yohimbine treatment in healthy volunteers. Eur J Clin Pharmacol. 1990;39(5):447–451. doi: 10.1007/BF00280934. [DOI] [PubMed] [Google Scholar]
  12. Galitzky J., Senard J. M., Lafontan M., Stillings M., Montastruc J. L., Berlan M. Identification of human platelet alpha 2-adrenoceptors with a new antagonist [3H]-RX821002, a 2-methoxy derivative of idazoxan. Br J Pharmacol. 1990 Aug;100(4):862–866. doi: 10.1111/j.1476-5381.1990.tb14105.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hollister A. S., FitzGerald G. A., Nadeau J. H., Robertson D. Acute reduction in human platelet alpha 2-adrenoreceptor affinity for agonist by endogenous and exogenous catecholamines. J Clin Invest. 1983 Oct;72(4):1498–1505. doi: 10.1172/JCI111106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Langin D., Lafontan M., Stillings M. R., Paris H. [3H]RX821002: a new tool for the identification of alpha 2A-adrenoceptors. Eur J Pharmacol. 1989 Aug 11;167(1):95–104. doi: 10.1016/0014-2999(89)90751-6. [DOI] [PubMed] [Google Scholar]
  15. Langin D., Lafontan M. [3H]idazoxan binding at non-alpha 2-adrenoceptors in rabbit adipocyte membranes. Eur J Pharmacol. 1989 Jan 10;159(2):199–203. doi: 10.1016/0014-2999(89)90707-3. [DOI] [PubMed] [Google Scholar]
  16. Langin D., Paris H., Dauzats M., Lafontan M. Discrimination between alpha 2-adrenoceptors and [3H]idazoxan-labelled non-adrenergic sites in rabbit white fat cells. Eur J Pharmacol. 1990 Apr 25;188(4-5):261–272. doi: 10.1016/0922-4106(90)90010-u. [DOI] [PubMed] [Google Scholar]
  17. Langin D., Paris H., Lafontan M. Binding of [3H]idazoxan and of its methoxy derivative [3H] RX821002 in human fat cells: [3H]idazoxan but not [3H] RX821002 labels additional non-alpha 2-adrenergic binding sites. Mol Pharmacol. 1990 Jun;37(6):876–885. [PubMed] [Google Scholar]
  18. Latifpour J., McNeill J. H. Reserpine-induced changes in cardiac adrenergic receptors. Can J Physiol Pharmacol. 1984 Jan;62(1):23–26. doi: 10.1139/y84-003. [DOI] [PubMed] [Google Scholar]
  19. MacKinnon A. C., Brown C. M., Spedding M., Kilpatrick A. T. [3H]-idazoxan binds with high affinity to two sites on hamster adipocytes: an alpha 2-adrenoceptor and a non-adrenoceptor site. Br J Pharmacol. 1989 Dec;98(4):1143–1150. doi: 10.1111/j.1476-5381.1989.tb12658.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mahan L. C., McKernan R. M., Insel P. A. Metabolism of alpha- and beta-adrenergic receptors in vitro and in vivo. Annu Rev Pharmacol Toxicol. 1987;27:215–235. doi: 10.1146/annurev.pa.27.040187.001243. [DOI] [PubMed] [Google Scholar]
  21. Majewski H., Hedler L., Starke K. Evidence for a physiological role of presynaptic alpha-adrenoceptors: modulation of noradrenaline release in the pithed rabbit. Naunyn Schmiedebergs Arch Pharmacol. 1983 Dec;324(4):256–263. doi: 10.1007/BF00502620. [DOI] [PubMed] [Google Scholar]
  22. Michel M. C., Brodde O. E., Schnepel B., Behrendt J., Tschada R., Motulsky H. J., Insel P. A. [3H]idazoxan and some other alpha 2-adrenergic drugs also bind with high affinity to a nonadrenergic site. Mol Pharmacol. 1989 Mar;35(3):324–330. [PubMed] [Google Scholar]
  23. Michel M. C., Insel P. A. Are there multiple imidazoline binding sites? Trends Pharmacol Sci. 1989 Sep;10(9):342–344. doi: 10.1016/0165-6147(89)90002-3. [DOI] [PubMed] [Google Scholar]
  24. Nakaki T., Nakadate T., Yamamoto S., Kato R. Alpha-2 adrenergic inhibition of intestinal secretion induced by prostaglandin E1, vasoactive intestinal peptide and dibutyryl cyclic AMP in rat jejunum. J Pharmacol Exp Ther. 1982 Mar;220(3):637–641. [PubMed] [Google Scholar]
  25. Nasseri A., Barakeh J. F., Abel P. W., Minneman K. P. Reserpine-induced postjunctional supersensitivity in rat vas deferens and caudal artery without changes in alpha adrenergic receptors. J Pharmacol Exp Ther. 1985 Aug;234(2):350–357. [PubMed] [Google Scholar]
  26. Parini A., Coupry I., Graham R. M., Uzielli I., Atlas D., Lanier S. M. Characterization of an imidazoline/guanidinium receptive site distinct from the alpha 2-adrenergic receptor. J Biol Chem. 1989 Jul 15;264(20):11874–11878. [PubMed] [Google Scholar]
  27. Saulnier-Blache J. S., Atgie C., Carpene C., Quideau N., Lafontan M. Hamster adipocyte alpha 2-adrenoceptor changes during fat mass modifications are not directly dependent on adipose tissue norepinephrine content. Endocrinology. 1990 May;126(5):2425–2434. doi: 10.1210/endo-126-5-2425. [DOI] [PubMed] [Google Scholar]
  28. Saulnier-Blache J. S., Larrouy D., Carpéné C., Quideau N., Dauzats M., Lafontan M. Photoperiodic control of adipocyte alpha 2-adrenoceptors in Syrian hamsters: role of testosterone. Endocrinology. 1990 Sep;127(3):1245–1253. doi: 10.1210/endo-127-3-1245. [DOI] [PubMed] [Google Scholar]
  29. Sibley D. R., Lefkowitz R. J. Molecular mechanisms of receptor desensitization using the beta-adrenergic receptor-coupled adenylate cyclase system as a model. Nature. 1985 Sep 12;317(6033):124–129. doi: 10.1038/317124a0. [DOI] [PubMed] [Google Scholar]
  30. Starke K., Göthert M., Kilbinger H. Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev. 1989 Jul;69(3):864–989. doi: 10.1152/physrev.1989.69.3.864. [DOI] [PubMed] [Google Scholar]
  31. Szabo B., Hedler L., Starke K. Peripheral presynaptic and central effects of clonidine, yohimbine and rauwolscine on the sympathetic nervous system in rabbits. Naunyn Schmiedebergs Arch Pharmacol. 1989 Dec;340(6):648–657. doi: 10.1007/BF00717740. [DOI] [PubMed] [Google Scholar]
  32. Taouis M., Berlan M., Montastruc P., Lafontan M. Characterization of dog fat cell adrenoceptors: variations in alpha-2 and beta adrenergic receptors distribution according to the extent of the fat deposits and the anatomical location. J Pharmacol Exp Ther. 1987 Sep;242(3):1041–1049. [PubMed] [Google Scholar]
  33. Taouis M., Berlan M., Montastruc P., Lafontan M. Mechanism of the lipid-mobilizing effect of alpha-2 adrenergic antagonists in the dog. J Pharmacol Exp Ther. 1988 Dec;247(3):1172–1180. [PubMed] [Google Scholar]
  34. Valet P., Damase-Michel C., Montastruc J. L., Montastruc P. Plasma catecholamines and adrenoceptors after chronic sinoaortic denervation in dogs. Fundam Clin Pharmacol. 1989;3(3):307–320. doi: 10.1111/j.1472-8206.1989.tb00459.x. [DOI] [PubMed] [Google Scholar]
  35. Yakubu M. A., Deighton N. M., Hamilton C. A., Reid J. L. Differences in the regulation of [3H]idazoxan and [3H]yohimbine binding sites in the rabbit. Eur J Pharmacol. 1990 Feb 13;176(3):305–311. doi: 10.1016/0014-2999(90)90024-z. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES