Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Sep;104(1):85–90. doi: 10.1111/j.1476-5381.1991.tb12389.x

Electrophysiological studies of the GABAA receptor ligand, 4-PIOL, on cultured hippocampal neurones.

U Kristiansen 1, J D Lambert 1, E Falch 1, P Krogsgaard-Larsen 1
PMCID: PMC1908300  PMID: 1664767

Abstract

1. Whole-cell, patch-clamp recordings from cultured hippocampal neurones have been used to characterize the action of the GABAA ligand, 5-(4-piperidyl)isoxazol-3-ol (4-PIOL). The action of 4-PIOL was compared with that of the established GABAA agonist, isoguvacine. 2. With a symmetrical Cl- gradient across the membrane and a holding potential of -60mV, both isoguvacine and 4-PIOL evoked an inward current. The reversal potentials of the responses to both agents were identical (+8.8 mV, n = 4) and the current/voltage relationships showed outward-going rectification. 3. The response to 300 microM 4-PIOL was completely blocked by the GABAA antagonist, bicuculline methobromide (BMB, 10 microM). The pA2 of BMB was greater than 6.46. With 2 mM 4-PIOL about 15% of the response remained in the presence of 100 microM BMB. This may represent a non-specific component of the response to large concentrations of 4-PIOL. 4. 4-PIOL was about 200 times less potent as an agonist than isoguvacine. because of the rapid fade (desensitization) of isoguvacine-induced currents, the maximum response to this agonist was not determined. However, the response to 2 mM 4-PIOL was only a small fraction of that evoked by submaximal concentrations of isoguvacine. 5. Setting the response to 1 mM 4-PIOL as maximum, the EC50 for 4-PIOL was 91 microM (95% confidence limits:73-114 microM). 6. 4-PIOL antagonized the response to isoguvacine with a parallel shift to the right of the dose-response curve.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
85

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brewer G. J., Cotman C. W. Survival and growth of hippocampal neurons in defined medium at low density: advantages of a sandwich culture technique or low oxygen. Brain Res. 1989 Aug 7;494(1):65–74. doi: 10.1016/0006-8993(89)90144-3. [DOI] [PubMed] [Google Scholar]
  2. Byberg J. R., Labouta I. M., Falch E., Hjeds H., Krogsgaard-Larsen P., Curtis D. R., Gynther B. D. Synthesis and biological activity of a GABAA agonist which has no effect on benzodiazepine binding and of structurally related glycine antagonists. Drug Des Deliv. 1987 May;1(4):261–274. [PubMed] [Google Scholar]
  3. Carbone E., Lux H. D. Kinetics and selectivity of a low-voltage-activated calcium current in chick and rat sensory neurones. J Physiol. 1987 May;386:547–570. doi: 10.1113/jphysiol.1987.sp016551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Edwards F. A., Konnerth A., Sakmann B., Takahashi T. A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflugers Arch. 1989 Sep;414(5):600–612. doi: 10.1007/BF00580998. [DOI] [PubMed] [Google Scholar]
  5. Foster N. L., Chase T. N., Denaro A., Hare T. A., Tamminga C. A. THIP treatment of Huntington's disease. Neurology. 1983 May;33(5):637–639. doi: 10.1212/wnl.33.5.637. [DOI] [PubMed] [Google Scholar]
  6. Gray R., Johnston D. Rectification of single GABA-gated chloride channels in adult hippocampal neurons. J Neurophysiol. 1985 Jul;54(1):134–142. doi: 10.1152/jn.1985.54.1.134. [DOI] [PubMed] [Google Scholar]
  7. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  8. Huguenard J. R., Alger B. E. Whole-cell voltage-clamp study of the fading of GABA-activated currents in acutely dissociated hippocampal neurons. J Neurophysiol. 1986 Jul;56(1):1–18. doi: 10.1152/jn.1986.56.1.1. [DOI] [PubMed] [Google Scholar]
  9. Izquierdo I. A game with shifting mirrors. Trends Pharmacol Sci. 1989 Dec;10(12):473–476. doi: 10.1016/0165-6147(89)90040-0. [DOI] [PubMed] [Google Scholar]
  10. Jensen M. S., Lambert J. D. Electrophysiological studies in cultured mouse CNS neurones of the actions of an agonist and an inverse agonist at the benzodiazepine receptor. Br J Pharmacol. 1986 Aug;88(4):717–731. doi: 10.1111/j.1476-5381.1986.tb16244.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kemp J. A., Marshall G. R., Woodruff G. N. Quantitative evaluation of the potencies of GABA-receptor agonists and antagonists using the rat hippocampal slice preparation. Br J Pharmacol. 1986 Apr;87(4):677–684. doi: 10.1111/j.1476-5381.1986.tb14585.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Korsgaard S., Casey D. E., Gerlach J., Hetmar O., Kaldan B., Mikkelsen L. B. The effect of tetrahydroisoxazolopyridinol (THIP) in tardive dyskinesia: a new gamma-aminobutyric acid agonist. Arch Gen Psychiatry. 1982 Sep;39(9):1017–1021. doi: 10.1001/archpsyc.1982.04290090021005. [DOI] [PubMed] [Google Scholar]
  13. Krogsgaard-Larsen P., Johnston G. A., Lodge D., Curtis D. R. A new class of GABA agonist. Nature. 1977 Jul 7;268(5615):53–55. doi: 10.1038/268053a0. [DOI] [PubMed] [Google Scholar]
  14. Lamb T. D. An inexpensive digital tape recorder suitable for neurophysiological signals. J Neurosci Methods. 1985 Oct;15(1):1–13. doi: 10.1016/0165-0270(85)90057-3. [DOI] [PubMed] [Google Scholar]
  15. Mathers D. A. The GABAA receptor: new insights from single-channel recording. Synapse. 1987;1(1):96–101. doi: 10.1002/syn.890010113. [DOI] [PubMed] [Google Scholar]
  16. Mattson M. P., Kater S. B. Isolated hippocampal neurons in cryopreserved long-term cultures: development of neuroarchitecture and sensitivity to NMDA. Int J Dev Neurosci. 1988;6(5):439–452. doi: 10.1016/0736-5748(88)90050-0. [DOI] [PubMed] [Google Scholar]
  17. Meldrum B. Pharmacology of GABA. Clin Neuropharmacol. 1982;5(3):293–316. doi: 10.1097/00002826-198205030-00004. [DOI] [PubMed] [Google Scholar]
  18. Numann R. E., Wong R. K. Voltage-clamp study on GABA response desensitization in single pyramidal cells dissociated from the hippocampus of adult guinea pigs. Neurosci Lett. 1984 Jun 29;47(3):289–294. doi: 10.1016/0304-3940(84)90528-7. [DOI] [PubMed] [Google Scholar]
  19. Petersen H. R., Jensen I., Dam M. THIP: a single-blind controlled trial in patients with epilepsy. Acta Neurol Scand. 1983 Feb;67(2):114–117. doi: 10.1111/j.1600-0404.1983.tb04552.x. [DOI] [PubMed] [Google Scholar]
  20. Segal M., Barker J. L. Rat hippocampal neurons in culture: properties of GABA-activated Cl- ion conductance. J Neurophysiol. 1984 Mar;51(3):500–515. doi: 10.1152/jn.1984.51.3.500. [DOI] [PubMed] [Google Scholar]
  21. Segal M., Barker J. L. Rat hippocampal neurons in culture: voltage-clamp analysis of inhibitory synaptic connections. J Neurophysiol. 1984 Sep;52(3):469–487. doi: 10.1152/jn.1984.52.3.469. [DOI] [PubMed] [Google Scholar]
  22. Simmonds M. A. Classification of some GABA antagonists with regard to site of action and potency in slices of rat cuneate nucleus. Eur J Pharmacol. 1982 Jun 4;80(4):347–358. doi: 10.1016/0014-2999(82)90080-2. [DOI] [PubMed] [Google Scholar]
  23. Tehrani M. H., Hablitz J. J., Barnes E. M., Jr cAMP increases the rate of GABAA receptor desensitization in chick cortical neurons. Synapse. 1989;4(2):126–131. doi: 10.1002/syn.890040206. [DOI] [PubMed] [Google Scholar]
  24. Thaker G. K., Nguyen J. A., Tamminga C. A. Increased saccadic distractibility in tardive dyskinesia: functional evidence for subcortical GABA dysfunction. Biol Psychiatry. 1989 Jan;25(1):49–59. doi: 10.1016/0006-3223(89)90146-7. [DOI] [PubMed] [Google Scholar]
  25. Thalmann R. H., Hershkowitz N. Some factors that influence the decrement in the response to GABA during its continuous iontophoretic application to hippocampal neurons. Brain Res. 1985 Sep 9;342(2):219–233. doi: 10.1016/0006-8993(85)91120-5. [DOI] [PubMed] [Google Scholar]
  26. Weiss D. S., Barnes E. M., Jr, Hablitz J. J. Whole-cell and single-channel recordings of GABA-gated currents in cultured chick cerebral neurons. J Neurophysiol. 1988 Feb;59(2):495–513. doi: 10.1152/jn.1988.59.2.495. [DOI] [PubMed] [Google Scholar]
  27. Weiss D. S. Membrane potential modulates the activation of GABA-gated channels. J Neurophysiol. 1988 Feb;59(2):514–527. doi: 10.1152/jn.1988.59.2.514. [DOI] [PubMed] [Google Scholar]
  28. Wong R. K., Watkins D. J. Cellular factors influencing GABA response in hippocampal pyramidal cells. J Neurophysiol. 1982 Oct;48(4):938–951. doi: 10.1152/jn.1982.48.4.938. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES