Abstract
1. The mouse AtT-20/D16-16 anterior pituitary tumour cell line was used as a model system for the study of protein kinase C (PKC)-mediated enhancement of calcium- and guanine nucleotide-evoked adrenocorticotrophin (ACTH) secretion. 2. A profile of the PKC isozymes present in AtT-20 cells was obtained by Western blotting analysis and it was found that AtT-20 cells express the alpha, beta, epsilon and zeta isoforms of PKC. 3. PKC isozymes were activated by the use of substances reported to activate particular isoforms of the enzyme. The effects of these substances were investigated in both intact and electrically-permeabilized cells. Phorbol 12-myristate 13-acetate (PMA, EC50 = 1 +/- 0.05 nM, which activates all isozymes of PKC, except the zeta isozyme), thymeleatoxin (TMX, EC50 = 10 +/- 0.5 nM, which activates the alpha, beta and gamma isozymes) and 12-deoxyphorbol 13-phenylacetate 20-acetate (dPPA, EC50 = 3 +/- 0.5 nM, a beta 1-selective isozyme activator) all stimulated ACTH secretion from intact cells in a concentration-dependent manner. Maximal TMX stimulated ACTH secretion was of a similar degree to that obtained in response to PMA but maximal dPPA-stimulated ACTH secretion was only 60-70% of that obtained in response to PMA or TMX. 4. Calcium stimulated ACTH secretion from electrically-permeabilized cells over the concentration-range of 100 nM to 10 microM. PMA (100 nM), TMX (100 nM) but not dPPA (100 nM) enhanced the amount of ACTH secreted at every concentration of calcium investigated.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abou-Samra A. B., Catt K. J., Aguilera G. Involvement of protein kinase C in the regulation of adrenocorticotropin release from rat anterior pituitary cells. Endocrinology. 1986 Jan;118(1):212–217. doi: 10.1210/endo-118-1-212. [DOI] [PubMed] [Google Scholar]
- Aguilera G., Harwood J. P., Wilson J. X., Morell J., Brown J. H., Catt K. J. Mechanisms of action of corticotropin-releasing factor and other regulators of corticotropin release in rat pituitary cells. J Biol Chem. 1983 Jul 10;258(13):8039–8045. [PubMed] [Google Scholar]
- Akita Y., Ohno S., Yajima Y., Suzuki K. Possible role of Ca2(+)-independent protein kinase C isozyme, nPKC epsilon, in thyrotropin-releasing hormone-stimulated signal transduction: differential down-regulation of nPKC epsilon in GH4C1 cells. Biochem Biophys Res Commun. 1990 Oct 15;172(1):184–189. doi: 10.1016/s0006-291x(05)80191-3. [DOI] [PubMed] [Google Scholar]
- Antoni F. A. Hypothalamic control of adrenocorticotropin secretion: advances since the discovery of 41-residue corticotropin-releasing factor. Endocr Rev. 1986 Nov;7(4):351–378. doi: 10.1210/edrv-7-4-351. [DOI] [PubMed] [Google Scholar]
- Axelrod J., Reisine T. D. Stress hormones: their interaction and regulation. Science. 1984 May 4;224(4648):452–459. doi: 10.1126/science.6143403. [DOI] [PubMed] [Google Scholar]
- Dannies P. S. Prolactin: multiple intracellular processing routes plus several potential mechanisms for regulation. Biochem Pharmacol. 1982 Sep 15;31(18):2845–2849. doi: 10.1016/0006-2952(82)90253-2. [DOI] [PubMed] [Google Scholar]
- Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
- Gillies G. E., Linton E. A., Lowry P. J. Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature. 1982 Sep 23;299(5881):355–357. doi: 10.1038/299355a0. [DOI] [PubMed] [Google Scholar]
- Gomperts B. D. GE: a GTP-binding protein mediating exocytosis. Annu Rev Physiol. 1990;52:591–606. doi: 10.1146/annurev.ph.52.030190.003111. [DOI] [PubMed] [Google Scholar]
- Guild S. Effects of adenosine 3':5'-cyclic monophosphate and guanine nucleotides on calcium-evoked ACTH release from electrically permeabilized AtT-20 cells. Br J Pharmacol. 1991 Sep;104(1):117–122. doi: 10.1111/j.1476-5381.1991.tb12394.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guild S., Itoh Y., Kebabian J. W., Luini A., Reisine T. Forskolin enhances basal and potassium-evoked hormone release from normal and malignant pituitary tissue: the role of calcium. Endocrinology. 1986 Jan;118(1):268–279. doi: 10.1210/endo-118-1-268. [DOI] [PubMed] [Google Scholar]
- Guild S., Reisine T. Molecular mechanisms of corticotropin-releasing factor stimulation of calcium mobilization and adrenocorticotropin release from anterior pituitary tumor cells. J Pharmacol Exp Ther. 1987 Apr;241(1):125–130. [PubMed] [Google Scholar]
- Herbert J. M., Augereau J. M., Gleye J., Maffrand J. P. Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun. 1990 Nov 15;172(3):993–999. doi: 10.1016/0006-291x(90)91544-3. [DOI] [PubMed] [Google Scholar]
- Housey G. M., Johnson M. D., Hsiao W. L., O'Brian C. A., Murphy J. P., Kirschmeier P., Weinstein I. B. Overproduction of protein kinase C causes disordered growth control in rat fibroblasts. Cell. 1988 Feb 12;52(3):343–354. doi: 10.1016/s0092-8674(88)80027-8. [DOI] [PubMed] [Google Scholar]
- Hug H., Sarre T. F. Protein kinase C isoenzymes: divergence in signal transduction? Biochem J. 1993 Apr 15;291(Pt 2):329–343. doi: 10.1042/bj2910329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kazanietz M. G., Areces L. B., Bahador A., Mischak H., Goodnight J., Mushinski J. F., Blumberg P. M. Characterization of ligand and substrate specificity for the calcium-dependent and calcium-independent protein kinase C isozymes. Mol Pharmacol. 1993 Aug;44(2):298–307. [PubMed] [Google Scholar]
- Kiley S. C., Olivier A. R., Gordge P. C., Ryves W. J., Evans F. J., Ways D. K., Parker P. J. 12-Deoxyphorbol-13-O-phenylacetate-20-acetate is not protein kinase C-beta isozyme-selective in vivo. Carcinogenesis. 1994 Feb;15(2):319–324. doi: 10.1093/carcin/15.2.319. [DOI] [PubMed] [Google Scholar]
- Kiley S. C., Parker P. J., Fabbro D., Jaken S. Hormone- and phorbol ester-activated protein kinase C isozymes mediate a reorganization of the actin cytoskeleton associated with prolactin secretion in GH4C1 cells. Mol Endocrinol. 1992 Jan;6(1):120–131. doi: 10.1210/mend.6.1.1738365. [DOI] [PubMed] [Google Scholar]
- Knight D. E., Baker P. F. Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields. J Membr Biol. 1982;68(2):107–140. doi: 10.1007/BF01872259. [DOI] [PubMed] [Google Scholar]
- Leli U., Parker P. J., Shea T. B. Intracellular delivery of protein kinase C-alpha or -epsilon isoform-specific antibodies promotes acquisition of a morphologically differentiated phenotype in neuroblastoma cells. FEBS Lett. 1992 Feb 3;297(1-2):91–94. doi: 10.1016/0014-5793(92)80334-d. [DOI] [PubMed] [Google Scholar]
- Luini A., De Matteis M. A. Dual regulation of ACTH secretion by guanine nucleotides in permeabilized AtT-20 cells. Cell Mol Neurobiol. 1988 Mar;8(1):129–138. doi: 10.1007/BF00712918. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luini A., Lewis D., Guild S., Corda D., Axelrod J. Hormone secretagogues increase cytosolic calcium by increasing cAMP in corticotropin-secreting cells. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8034–8038. doi: 10.1073/pnas.82.23.8034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacEwan D. J., Mitchell R. Calcium influx through 'L'-type channels into rat anterior pituitary cells can be modulated in two ways by protein kinase C (PKC-isoform selectivity of 1,2-dioctanoyl sn-glycerol?). FEBS Lett. 1991 Oct 7;291(1):79–83. doi: 10.1016/0014-5793(91)81108-k. [DOI] [PubMed] [Google Scholar]
- MacEwan D. J., Mitchell R., Thomson F. J., Johnson M. S. Inhibition of depolarisation-induced calcium influx into GH3 cells by arachidonic acid: the involvement of protein kinase C. Biochim Biophys Acta. 1991 Sep 24;1094(3):346–354. doi: 10.1016/0167-4889(91)90096-g. [DOI] [PubMed] [Google Scholar]
- McFerran B. W., Guild S. B. Effects of protein kinase C activators upon the late stages of the ACTH secretory pathway of AtT-20 cells. Br J Pharmacol. 1994 Sep;113(1):171–178. doi: 10.1111/j.1476-5381.1994.tb16190.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naor Z., Dan-Cohen H., Hermon J., Limor R. Induction of exocytosis in permeabilized pituitary cells by alpha- and beta-type protein kinase C. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4501–4504. doi: 10.1073/pnas.86.12.4501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohno S., Akita Y., Hata A., Osada S., Kubo K., Konno Y., Akimoto K., Mizuno K., Saido T., Kuroki T. Structural and functional diversities of a family of signal transducing protein kinases, protein kinase C family; two distinct classes of PKC, conventional cPKC and novel nPKC. Adv Enzyme Regul. 1991;31:287–303. doi: 10.1016/0065-2571(91)90018-h. [DOI] [PubMed] [Google Scholar]
- Pai J. K., Pachter J. A., Weinstein I. B., Bishop W. R. Overexpression of protein kinase C beta 1 enhances phospholipase D activity and diacylglycerol formation in phorbol ester-stimulated rat fibroblasts. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):598–602. doi: 10.1073/pnas.88.2.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reisine T., Guild S. Activators of protein kinase C and cyclic AMP-dependent protein kinase regulate intracellular calcium levels through distinct mechanisms in mouse anterior pituitary tumor cells. Mol Pharmacol. 1987 Oct;32(4):488–496. [PubMed] [Google Scholar]
- Reisine T. Phorbol esters and corticotropin releasing factor stimulate calcium influx in the anterior pituitary tumor cell line, AtT-20, through different intracellular sites of action. J Pharmacol Exp Ther. 1989 Mar;248(3):984–990. [PubMed] [Google Scholar]
- Reisine T. Somatostatin desensitization: loss of the ability of somatostatin to inhibit cyclic AMP accumulation and adrenocorticotropin hormone release. J Pharmacol Exp Ther. 1984 Apr;229(1):14–20. [PubMed] [Google Scholar]
- Ryves W. J., Evans A. T., Olivier A. R., Parker P. J., Evans F. J. Activation of the PKC-isotypes alpha, beta 1, gamma, delta and epsilon by phorbol esters of different biological activities. FEBS Lett. 1991 Aug 19;288(1-2):5–9. doi: 10.1016/0014-5793(91)80989-g. [DOI] [PubMed] [Google Scholar]
- Sharma P., Evans A. T., Parker P. J., Evans F. J. NADPH-oxidase activation by protein kinase C-isotypes. Biochem Biophys Res Commun. 1991 Jun 28;177(3):1033–1040. doi: 10.1016/0006-291x(91)90642-k. [DOI] [PubMed] [Google Scholar]
- Strulovici B., Daniel-Issakani S., Baxter G., Knopf J., Sultzman L., Cherwinski H., Nestor J., Jr, Webb D. R., Ransom J. Distinct mechanisms of regulation of protein kinase C epsilon by hormones and phorbol diesters. J Biol Chem. 1991 Jan 5;266(1):168–173. [PubMed] [Google Scholar]
- Strulovici B., Daniel-Issakani S., Oto E., Nestor J., Jr, Chan H., Tsou A. P. Activation of distinct protein kinase C isozymes by phorbol esters: correlation with induction of interleukin 1 beta gene expression. Biochemistry. 1989 Apr 18;28(8):3569–3576. doi: 10.1021/bi00434a063. [DOI] [PubMed] [Google Scholar]
- Thomson F. J., Johnson M. S., Mitchell R., Wolbers W. B., Ison A. J., MacEwan D. J. The differential effects of protein kinase C activators and inhibitors on rat anterior pituitary hormone release. Mol Cell Endocrinol. 1993 Aug;94(2):223–234. doi: 10.1016/0303-7207(93)90171-f. [DOI] [PubMed] [Google Scholar]

