Abstract
1. Completely isolated identified neurones from the right parietal ganglion of the pond snail Lymnaea stagnalis were studied under two-electrode voltage-clamp. Neuronal nicotinic acetylcholine receptor currents were studied at low acetylcholine (ACh) concentrations (< or = 200 nM). At these levels, control currents were non-desensitizing and proportional to the square of the ACh concentration. 2. IC50 concentrations were determined for the steady-state inhibition of the ACh-activated current by 31 general anaesthetics plus the non-anaesthetic alcohol n-tridecanol. The general anaesthetics included inhalational agents, n-alcohols, n-alkane-(alpha,omega)-diols, cycloalcohols and an n-alkane. 3. Anaesthetic inhibition was independent of voltage and consistent with two anaesthetic-binding sites on the receptor. 4. IC50 concentrations for inhibiting the neuronal nicotinic ACh receptor correlated well (r = 0.97) with EC50 concentrations for general anaesthesia. The maximum deviation from the line of identity was less than fourfold. The inhalational agents tended to be more potent as inhibitors of the ACh receptor than as general anaesthetics, while the alcohols and diols were less potent. 5. The inhibition of the ACh-induced current by the homologous series of n-alcohols exhibited a cutoff at the same position (just after dodecanol) as found for the induction of general anaesthesia in tadpoles. 6. Polarity profile maps of the anaesthetic-binding sites on the neuronal nicotinic ACh receptor were calculated from IC50 concentrations for the homologous series of n-alcohols and n-alkane-(alpha,omega)-diols. They reveal amphiphilic sites with apolar regions capable of accommodating the hydrocarbon chains of n-alcohols as large as decanol.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abraham M. H., Lieb W. R., Franks N. P. Role of hydrogen bonding in general anesthesia. J Pharm Sci. 1991 Aug;80(8):719–724. doi: 10.1002/jps.2600800802. [DOI] [PubMed] [Google Scholar]
- Alifimoff J. K., Firestone L. L., Miller K. W. Anaesthetic potencies of primary alkanols: implications for the molecular dimensions of the anaesthetic site. Br J Pharmacol. 1989 Jan;96(1):9–16. doi: 10.1111/j.1476-5381.1989.tb11777.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andreev A. A., Veprintsev B. N., Vulfius C. A. Two-component desensitization of nicotinic receptors induced by acetylcholine agonists in Lymnaea stagnalis neurones. J Physiol. 1984 Aug;353:375–391. doi: 10.1113/jphysiol.1984.sp015341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arimura H., Ikemoto Y. Action of enflurane on cholinergic transmission in identified Aplysia neurones. Br J Pharmacol. 1986 Nov;89(3):573–582. doi: 10.1111/j.1476-5381.1986.tb11158.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chemeris N. K., Kazachenko V. N., Kislov A. N., Kurchikov A. L. Inhibition of acetylcholine responses by intracellular calcium in Lymnaea stagnalis neurones. J Physiol. 1982 Feb;323:1–19. doi: 10.1113/jphysiol.1982.sp014058. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cote I. L., Wilson W. A. Effects of barbiturates on inhibitory and excitatory responses to applied neurotransmitters in Aplysia. J Pharmacol Exp Ther. 1980 Jul;214(1):161–165. [PubMed] [Google Scholar]
- Curry S., Lieb W. R., Franks N. P. Effects of general anesthetics on the bacterial luciferase enzyme from Vibrio harveyi: an anesthetic target site with differential sensitivity. Biochemistry. 1990 May 15;29(19):4641–4652. doi: 10.1021/bi00471a020. [DOI] [PubMed] [Google Scholar]
- Curry S., Moss G. W., Dickinson R., Lieb W. R., Franks N. P. Probing the molecular dimensions of general anaesthetic target sites in tadpoles (Xenopus laevis) and model systems using cycloalcohols. Br J Pharmacol. 1991 Jan;102(1):167–173. doi: 10.1111/j.1476-5381.1991.tb12148.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dickinson R., Franks N. P., Lieb W. R. Can the stereoselective effects of the anesthetic isoflurane be accounted for by lipid solubility? Biophys J. 1994 Jun;66(6):2019–2023. doi: 10.1016/S0006-3495(94)80994-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dilger J. P., Brett R. S., Mody H. I. The effects of isoflurane on acetylcholine receptor channels.: 2. Currents elicited by rapid perfusion of acetylcholine. Mol Pharmacol. 1993 Nov;44(5):1056–1063. [PubMed] [Google Scholar]
- Franks N. P., Lieb W. R. Do general anaesthetics act by competitive binding to specific receptors? Nature. 1984 Aug 16;310(5978):599–601. doi: 10.1038/310599a0. [DOI] [PubMed] [Google Scholar]
- Franks N. P., Lieb W. R. Mapping of general anaesthetic target sites provides a molecular basis for cutoff effects. Nature. 1985 Jul 25;316(6026):349–351. doi: 10.1038/316349a0. [DOI] [PubMed] [Google Scholar]
- Franks N. P., Lieb W. R. Molecular and cellular mechanisms of general anaesthesia. Nature. 1994 Feb 17;367(6464):607–614. doi: 10.1038/367607a0. [DOI] [PubMed] [Google Scholar]
- Franks N. P., Lieb W. R. Partitioning of long-chain alcohols into lipid bilayers: implications for mechanisms of general anesthesia. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5116–5120. doi: 10.1073/pnas.83.14.5116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franks N. P., Lieb W. R. Selective actions of volatile general anaesthetics at molecular and cellular levels. Br J Anaesth. 1993 Jul;71(1):65–76. doi: 10.1093/bja/71.1.65. [DOI] [PubMed] [Google Scholar]
- Franks N. P., Lieb W. R. Selective effects of volatile general anesthetics on identified neurons. Ann N Y Acad Sci. 1991;625:54–70. doi: 10.1111/j.1749-6632.1991.tb33829.x. [DOI] [PubMed] [Google Scholar]
- Franks N. P., Lieb W. R. Stereospecific effects of inhalational general anesthetic optical isomers on nerve ion channels. Science. 1991 Oct 18;254(5030):427–430. doi: 10.1126/science.1925602. [DOI] [PubMed] [Google Scholar]
- Franks N. P., Lieb W. R. Volatile general anaesthetics activate a novel neuronal K+ current. Nature. 1988 Jun 16;333(6174):662–664. doi: 10.1038/333662a0. [DOI] [PubMed] [Google Scholar]
- Franks N. P., Lieb W. R. Where do general anaesthetics act? Nature. 1978 Jul 27;274(5669):339–342. doi: 10.1038/274339a0. [DOI] [PubMed] [Google Scholar]
- Harris B., Moody E., Skolnick P. Isoflurane anesthesia is stereoselective. Eur J Pharmacol. 1992 Jul 7;217(2-3):215–216. doi: 10.1016/0014-2999(92)90875-5. [DOI] [PubMed] [Google Scholar]
- Judge S. E., Norman J. The action of general anaesthetics on acetylcholine-induced inhibition in the central nervous system of Helix. Br J Pharmacol. 1982 Feb;75(2):353–357. doi: 10.1111/j.1476-5381.1982.tb08793.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kehoe J. Three acetylcholine receptors in Aplysia neurones. J Physiol. 1972 Aug;225(1):115–146. doi: 10.1113/jphysiol.1972.sp009931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kita Y., Bennett L. J., Miller K. W. The partial molar volumes of anesthetics in lipid bilayers. Biochim Biophys Acta. 1981 Sep 21;647(1):130–139. doi: 10.1016/0005-2736(81)90301-1. [DOI] [PubMed] [Google Scholar]
- Li C., Peoples R. W., Weight F. F. Alcohol action on a neuronal membrane receptor: evidence for a direct interaction with the receptor protein. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8200–8204. doi: 10.1073/pnas.91.17.8200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lysko G. S., Robinson J. L., Casto R., Ferrone R. A. The stereospecific effects of isoflurane isomers in vivo. Eur J Pharmacol. 1994 Sep 22;263(1-2):25–29. doi: 10.1016/0014-2999(94)90519-3. [DOI] [PubMed] [Google Scholar]
- Mathie A., Colquhoun D., Cull-Candy S. G. Rectification of currents activated by nicotinic acetylcholine receptors in rat sympathetic ganglion neurones. J Physiol. 1990 Aug;427:625–655. doi: 10.1113/jphysiol.1990.sp018191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller K. W., Firestone L. L., Alifimoff J. K., Streicher P. Nonanesthetic alcohols dissolve in synaptic membranes without perturbing their lipids. Proc Natl Acad Sci U S A. 1989 Feb;86(3):1084–1087. doi: 10.1073/pnas.86.3.1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moss G. W., Curry S., Franks N. P., Lieb W. R. Mapping the polarity profiles of general anesthetic target sites using n-alkane-(alpha, omega)-diols. Biochemistry. 1991 Oct 29;30(43):10551–10557. doi: 10.1021/bi00107a026. [DOI] [PubMed] [Google Scholar]
- Moss G. W., Franks N. P., Lieb W. R. Modulation of the general anesthetic sensitivity of a protein: a transition between two forms of firefly luciferase. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):134–138. doi: 10.1073/pnas.88.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Papke R. L. The kinetic properties of neuronal nicotinic receptors: genetic basis of functional diversity. Prog Neurobiol. 1993 Oct;41(4):509–531. doi: 10.1016/0301-0082(93)90028-q. [DOI] [PubMed] [Google Scholar]
- Patrick J., Séquéla P., Vernino S., Amador M., Luetje C., Dani J. A. Functional diversity of neuronal nicotinic acetylcholine receptors. Prog Brain Res. 1993;98:113–120. doi: 10.1016/s0079-6123(08)62387-0. [DOI] [PubMed] [Google Scholar]
- Pocock G., Richards C. D. Excitatory and inhibitory synaptic mechanisms in anaesthesia. Br J Anaesth. 1993 Jul;71(1):134–147. doi: 10.1093/bja/71.1.134. [DOI] [PubMed] [Google Scholar]
- Pocock G., Richards C. D. The action of volatile anaesthetics on stimulus-secretion coupling in bovine adrenal chromaffin cells. Br J Pharmacol. 1988 Sep;95(1):209–217. doi: 10.1111/j.1476-5381.1988.tb16566.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pringle M. J., Brown K. B., Miller K. W. Can the lipid theories of anesthesia account for the cutoff in anesthetic potency in homologous series of alcohols? Mol Pharmacol. 1981 Jan;19(1):49–55. [PubMed] [Google Scholar]
- Raines D. E., Korten S. E., Hill A. G., Miller K. W. Anesthetic cutoff in cycloalkanemethanols. A test of current theories. Anesthesiology. 1993 May;78(5):918–927. doi: 10.1097/00000542-199305000-00017. [DOI] [PubMed] [Google Scholar]
- Sargent P. B. The diversity of neuronal nicotinic acetylcholine receptors. Annu Rev Neurosci. 1993;16:403–443. doi: 10.1146/annurev.ne.16.030193.002155. [DOI] [PubMed] [Google Scholar]
- Seto T., Mashimo T., Yoshiya I., Kanashiro M., Taniguchi Y. The solubility of volatile anaesthetics in water at 25.0 degrees C using 19F NMR spectroscopy. J Pharm Biomed Anal. 1992 Jan;10(1):1–7. doi: 10.1016/0731-7085(92)80003-6. [DOI] [PubMed] [Google Scholar]
