Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 May;115(2):321–329. doi: 10.1111/j.1476-5381.1995.tb15880.x

Activation by ATP of a P2U 'nucleotide' receptor in an exocrine cell.

S C Martin 1, T J Shuttleworth 1
PMCID: PMC1908332  PMID: 7670734

Abstract

1. We employed the perforated patch whole-cell technique to investigate the effects of ATP and other related nucleotides on membrane conductances in avian exocrine salt gland cells. 2. ATP (10 microM-1 mM) evoked an increase in maxi-K+ and Cl- conductances with a reversal potential of -35 mV. At lower concentrations of ATP (< or = 100 microM) responses were generally oscillatory with a sustained response observed at higher concentrations (> or = 200 microM). 3. Both oscillatory and sustained responses were abolished by the removal of bath Ca2+. In cells preincubated in extracellular saline containing reduced Ca2+, the application of ATP resulted in a transient increase in current. 4. As increasing concentrations of ATP (and related nucleotides) evoked a graded sequence of events with little run-down we were able to establish a rank order of potency in single cells. The order of potency of ATP analogues and agonists of the various P2-receptor subtypes was UTP > ATP = 2-methylthio-ATP > ADP. Adenosine (1 microM-1 mM), AMP (1 microM-1 mM), alpha,beta-methylene-ATP (1 microM-1 mM) and beta,gamma-methylene-ATP (1 microM-1 mM) were without effect. 5. In conclusion, although unable to preclude a role for a P2Y-receptor, our results suggest that ATP binds to a P2U-receptor increasing [Ca2+]i and subsequently activating Ca(2+)-sensitive K+ and Cl- currents.

Full text

PDF
321

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benham C. D., Tsien R. W. A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature. 1987 Jul 16;328(6127):275–278. doi: 10.1038/328275a0. [DOI] [PubMed] [Google Scholar]
  2. Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
  3. Burnstock G., Kennedy C. Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol. 1985;16(5):433–440. doi: 10.1016/0306-3623(85)90001-1. [DOI] [PubMed] [Google Scholar]
  4. Dawson D. C., Richards N. W. Basolateral K conductance: role in regulation of NaCl absorption and secretion. Am J Physiol. 1990 Aug;259(2 Pt 1):C181–C195. doi: 10.1152/ajpcell.1990.259.2.C181. [DOI] [PubMed] [Google Scholar]
  5. Dixon C. J., Woods N. M., Cuthbertson K. S., Cobbold P. H. Evidence for two Ca2(+)-mobilizing purinoceptors on rat hepatocytes. Biochem J. 1990 Jul 15;269(2):499–502. doi: 10.1042/bj2690499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dubyak G. R., el-Moatassim C. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol. 1993 Sep;265(3 Pt 1):C577–C606. doi: 10.1152/ajpcell.1993.265.3.C577. [DOI] [PubMed] [Google Scholar]
  7. Erb L., Lustig K. D., Ahmed A. H., Gonzalez F. A., Weisman G. A. Covalent incorporation of 3'-O-(4-benzoyl)benzoyl-ATP into a P2 purinoceptor in transformed mouse fibroblasts. J Biol Chem. 1990 May 5;265(13):7424–7431. [PubMed] [Google Scholar]
  8. Gallacher D. V. Are there purinergic receptors on parotid acinar cells? Nature. 1982 Mar 4;296(5852):83–86. doi: 10.1038/296083a0. [DOI] [PubMed] [Google Scholar]
  9. Gibb C. A., Singh S., Cook D. I., Poronnik P., Conigrave A. D. A nucleotide receptor that mobilizes Ca2+ in the mouse submandibular salivary cell line ST885. Br J Pharmacol. 1994 Apr;111(4):1135–1139. doi: 10.1111/j.1476-5381.1994.tb14863.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gordon J. L. Extracellular ATP: effects, sources and fate. Biochem J. 1986 Jan 15;233(2):309–319. doi: 10.1042/bj2330309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  12. Hurley T. W., Ryan M. P., Shoemaker D. D. Mobilization of Ca2+ influx, but not of stored Ca2+, by extracellular ATP in rat submandibular gland acini. Arch Oral Biol. 1994 Mar;39(3):205–212. doi: 10.1016/0003-9969(94)90046-9. [DOI] [PubMed] [Google Scholar]
  13. Kim H., Ko J. P., Kang U. G., Park J. B., Kim H. L., Lee Y. H., Kim Y. S. Electroconvulsive shock reduces inositol 1,4,5-trisphosphate 3-kinase mRNA expression in rat dentate gyrus. J Neurochem. 1994 Nov;63(5):1991–1994. doi: 10.1046/j.1471-4159.1994.63051991.x. [DOI] [PubMed] [Google Scholar]
  14. Ko W. H., O'Dowd J. J., Pediani J. D., Bovell D. L., Elder H. Y., Jenkinson D. M., Wilson S. M. Extracellular ATP can activate autonomic signal transduction pathways in cultured equine sweat gland epithelial cells. J Exp Biol. 1994 May;190:239–252. doi: 10.1242/jeb.190.1.239. [DOI] [PubMed] [Google Scholar]
  15. Martin S. C., Shuttleworth T. J. Ca2+ influx drives agonist-activated [Ca2+]i oscillations in an exocrine cell. FEBS Lett. 1994 Sep 19;352(1):32–36. doi: 10.1016/0014-5793(94)00913-9. [DOI] [PubMed] [Google Scholar]
  16. Martin S. C., Shuttleworth T. J. Muscarinic-receptor activation stimulates oscillations in K+ and Cl- currents which are acutely dependent on extracellular Ca2+ in avian salt gland cells. Pflugers Arch. 1994 Feb;426(3-4):231–238. doi: 10.1007/BF00374776. [DOI] [PubMed] [Google Scholar]
  17. Martin S. C., Thompson J., Shuttleworth T. J. Potentiation of Ca(2+)-activated secretory activity by a cAMP-mediated mechanism in avian salt gland cells. Am J Physiol. 1994 Jul;267(1 Pt 1):C255–C265. doi: 10.1152/ajpcell.1994.267.1.C255. [DOI] [PubMed] [Google Scholar]
  18. McMillian M. K., Soltoff S. P., Cantley L. C., Rudel R., Talamo B. R. Two distinct cytosolic calcium responses to extracellular ATP in rat parotid acinar cells. Br J Pharmacol. 1993 Feb;108(2):453–461. doi: 10.1111/j.1476-5381.1993.tb12825.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Murgo A. J., Contrera J. G., Sistare F. D. Evidence for separate calcium-signaling P2T and P2U purinoceptors in human megakaryocytic Dami cells. Blood. 1994 Mar 1;83(5):1258–1267. [PubMed] [Google Scholar]
  20. O'Connor S. E., Dainty I. A., Leff P. Further subclassification of ATP receptors based on agonist studies. Trends Pharmacol Sci. 1991 Apr;12(4):137–141. doi: 10.1016/0165-6147(91)90530-6. [DOI] [PubMed] [Google Scholar]
  21. O'Connor S. E. Recent developments in the classification and functional significance of receptors for ATP and UTP, evidence for nucleotide receptors. Life Sci. 1992;50(22):1657–1664. doi: 10.1016/0024-3205(92)90420-t. [DOI] [PubMed] [Google Scholar]
  22. Petersen O. H. Stimulus-secretion coupling: cytoplasmic calcium signals and the control of ion channels in exocrine acinar cells. J Physiol. 1992 Mar;448:1–51. doi: 10.1113/jphysiol.1992.sp019028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Putney J. W., Jr Capacitative calcium entry revisited. Cell Calcium. 1990 Nov-Dec;11(10):611–624. doi: 10.1016/0143-4160(90)90016-n. [DOI] [PubMed] [Google Scholar]
  24. Rae J., Cooper K., Gates P., Watsky M. Low access resistance perforated patch recordings using amphotericin B. J Neurosci Methods. 1991 Mar;37(1):15–26. doi: 10.1016/0165-0270(91)90017-t. [DOI] [PubMed] [Google Scholar]
  25. Richards N. W., Lowy R. J., Ernst S. A., Dawson D. C. Two K+ channel types, muscarinic agonist-activated and inwardly rectifying, in a Cl- secretory epithelium: the avian salt gland. J Gen Physiol. 1989 Jun;93(6):1171–1194. doi: 10.1085/jgp.93.6.1171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sasaki T., Gallacher D. V. Extracellular ATP activates receptor-operated cation channels in mouse lacrimal acinar cells to promote calcium influx in the absence of phosphoinositide metabolism. FEBS Lett. 1990 May 7;264(1):130–134. doi: 10.1016/0014-5793(90)80782-e. [DOI] [PubMed] [Google Scholar]
  27. Sasaki T., Gallacher D. V. The ATP-induced inward current in mouse lacrimal acinar cells is potentiated by isoprenaline and GTP. J Physiol. 1992 Feb;447:103–118. doi: 10.1113/jphysiol.1992.sp018993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shuttleworth T. J., Thompson J. L. Intracellular [Ca2+] and inositol phosphates in avian nasal gland cells. Am J Physiol. 1989 Nov;257(5 Pt 1):C1020–C1029. doi: 10.1152/ajpcell.1989.257.5.C1020. [DOI] [PubMed] [Google Scholar]
  29. Soltoff S. P., McMillian M. K., Talamo B. R. ATP activates a cation-permeable pathway in rat parotid acinar cells. Am J Physiol. 1992 Apr;262(4 Pt 1):C934–C940. doi: 10.1152/ajpcell.1992.262.4.C934. [DOI] [PubMed] [Google Scholar]
  30. Tatham P. E., Cusack N. J., Gomperts B. D. Characterisation of the ATP4- receptor that mediates permeabilisation of rat mast cells. Eur J Pharmacol. 1988 Feb 16;147(1):13–21. doi: 10.1016/0014-2999(88)90628-0. [DOI] [PubMed] [Google Scholar]
  31. Toescu E. C., Lawrie A. M., Petersen O. H., Gallacher D. V. Spatial and temporal distribution of agonist-evoked cytoplasmic Ca2+ signals in exocrine acinar cells analysed by digital image microscopy. EMBO J. 1992 Apr;11(4):1623–1629. doi: 10.1002/j.1460-2075.1992.tb05208.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yu H. X., Turner J. T. Functional studies in the human submandibular duct cell line, HSG-PA, suggest a second salivary gland receptor subtype for nucleotides. J Pharmacol Exp Ther. 1991 Dec;259(3):1344–1350. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES