Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Jun;103(2):1535–1541. doi: 10.1111/j.1476-5381.1991.tb09823.x

Tachykinin antagonists and capsaicin-induced contraction of the rat isolated urinary bladder: evidence for tachykinin-mediated cotransmission.

C A Maggi 1, R Patacchini 1, P Santicioli 1, S Giuliani 1
PMCID: PMC1908336  PMID: 1715797

Abstract

1. The possible involvement of tachykinins (TKs) in the contraction produced by capsaicin in the rat isolated urinary bladder was addressed on the hypothesis that co-release of substance P (SP) and neurokinin A (NKA) occurs from sensory nerve terminals. 2. A low concentration of SP (30 nM) produced a rapid contraction which faded to baseline within 10 min. A low concentration of NKA (10 nM) produced a slowly developing contraction which was still evident at 10 min. Capsaicin (1 microM) produced a rapid phasic response and a tonic response (late response to capsaicin). Co-administration of SP and NKA mimicked the response to capsaicin more than each TK alone. 3. Fading of the response to SP was not caused by receptor desensitization and was partially prevented by peptidase inhibitors. 4. Spantide (3 microM) selectively antagonized the SP-induced contraction while L-659,877 (3-10 microM) or MEN 10,376 (10-30 microM) which are NK2 receptor selective antagonists selectively blocked the response to NKA. Co-administration of spantide and L-659,877 inhibited the response to both SP and NKA by an amount not greater than that produced by each antagonist alone. 5. Spantide selectively reduced the peak response to capsaicin, while leaving the late response unaffected. L-659,877 (3 microM) and MEN 10,376 (10 microM) selectively inhibited the late response to capsaicin while, at higher concentrations, also reduced the peak response to capsaicin. Co-administration of spantide and L-659,877 reduced the peak response to capsaicin more than that produced by each antagonist alone. 6. Bombesin (10 nM) produced a tonic contraction similar to that induced by NKA.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1535

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdel-Hakim A. M., Rioux F., Elhilali M. The contractile effect of bombesin on the rat isolated urinary bladder. Eur J Pharmacol. 1981 Mar 12;70(2):167–173. doi: 10.1016/0014-2999(81)90211-9. [DOI] [PubMed] [Google Scholar]
  2. Bo X. N., Burnstock G. The effects of Bay K 8644 and nifedipine on the responses of rat urinary bladder to electrical field stimulation, beta,gamma-methylene ATP and acetylcholine. Br J Pharmacol. 1990 Oct;101(2):494–498. doi: 10.1111/j.1476-5381.1990.tb12736.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brading A. F., Williams J. H. Contractile responses of smooth muscle strips from rat and guinea-pig urinary bladder to transmural stimulation: effects of atropine and alpha,beta-methylene ATP. Br J Pharmacol. 1990 Mar;99(3):493–498. doi: 10.1111/j.1476-5381.1990.tb12956.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown C., Burnstock G., Cocks T. Effects of adenosine 5'-triphosphate (ATP) and beta-gamma-methylene ATP on the rat urinary bladder. Br J Pharmacol. 1979 Jan;65(1):97–102. doi: 10.1111/j.1476-5381.1979.tb17337.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buck S. H., Shatzer S. A. Agonist and antagonist binding to tachykinin peptide NK-2 receptors. Life Sci. 1988;42(26):2701–2708. doi: 10.1016/0024-3205(88)90246-9. [DOI] [PubMed] [Google Scholar]
  6. Burcher E., Buck S. H. Multiple tachykinin binding sites in hamster, rat and guinea-pig urinary bladder. Eur J Pharmacol. 1986 Sep 9;128(3):165–177. doi: 10.1016/0014-2999(86)90763-6. [DOI] [PubMed] [Google Scholar]
  7. Carter M. S., Krause J. E. Structure, expression, and some regulatory mechanisms of the rat preprotachykinin gene encoding substance P, neurokinin A, neuropeptide K, and neuropeptide gamma. J Neurosci. 1990 Jul;10(7):2203–2214. doi: 10.1523/JNEUROSCI.10-07-02203.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dalsgaard C. J., Haegerstrand A., Theodorsson-Norheim E., Brodin E., Hökfelt T. Neurokinin A-like immunoreactivity in rat primary sensory neurons; coexistence with substance P. Histochemistry. 1985;83(1):37–39. doi: 10.1007/BF00495297. [DOI] [PubMed] [Google Scholar]
  9. Dion S., D'Orléans-Juste P., Drapeau G., Rhaleb N. E., Rouissi N., Tousignant C., Regoli D. Characterization of neurokinin receptors in various isolated organs by the use of selective agonists. Life Sci. 1987 Nov 16;41(20):2269–2278. doi: 10.1016/0024-3205(87)90538-8. [DOI] [PubMed] [Google Scholar]
  10. Fyffe R. E., Perl E. R. Is ATP a central synaptic mediator for certain primary afferent fibers from mammalian skin? Proc Natl Acad Sci U S A. 1984 Nov;81(21):6890–6893. doi: 10.1073/pnas.81.21.6890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ghatei M. A., Gu J., Allen J. M., Polak J. M., Bloom S. R. Bombesin-like immunoreactivity in female rat genito-urinary tract. Neurosci Lett. 1985 Feb 28;54(1):13–19. doi: 10.1016/s0304-3940(85)80111-7. [DOI] [PubMed] [Google Scholar]
  12. HOLTON F. A., HOLTON P. The capillary dilator substances in dry powders of spinal roots; a possible role of adenosine triphosphate in chemical transmission from nerve endings. J Physiol. 1954 Oct 28;126(1):124–140. doi: 10.1113/jphysiol.1954.sp005198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HOLTON P. The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J Physiol. 1959 Mar 12;145(3):494–504. doi: 10.1113/jphysiol.1959.sp006157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harmar A. J., Keen P. Rat sensory ganglia incorporate radiolabelled amino acids into substance K (neurokinin alpha) in vitro. Neurosci Lett. 1984 Oct 26;51(3):387–391. doi: 10.1016/0304-3940(84)90408-7. [DOI] [PubMed] [Google Scholar]
  15. Holzer P. Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience. 1988 Mar;24(3):739–768. doi: 10.1016/0306-4522(88)90064-4. [DOI] [PubMed] [Google Scholar]
  16. Hua X. Y., Theodorsson-Norheim E., Brodin E., Lundberg J. M., Hökfelt T. Multiple tachykinins (neurokinin A, neuropeptide K and substance P) in capsaicin-sensitive sensory neurons in the guinea-pig. Regul Pept. 1985 Dec;13(1):1–19. doi: 10.1016/0167-0115(85)90082-5. [DOI] [PubMed] [Google Scholar]
  17. Jahr C. E., Jessell T. M. ATP excites a subpopulation of rat dorsal horn neurones. Nature. 1983 Aug 25;304(5928):730–733. doi: 10.1038/304730a0. [DOI] [PubMed] [Google Scholar]
  18. Jensen R. T., Jones S. W., Folkers K., Gardner J. D. A synthetic peptide that is a bombesin receptor antagonist. Nature. 1984 May 3;309(5963):61–63. doi: 10.1038/309061a0. [DOI] [PubMed] [Google Scholar]
  19. Krause J. E., Chirgwin J. M., Carter M. S., Xu Z. S., Hershey A. D. Three rat preprotachykinin mRNAs encode the neuropeptides substance P and neurokinin A. Proc Natl Acad Sci U S A. 1987 Feb;84(3):881–885. doi: 10.1073/pnas.84.3.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Leander S., Håkanson R., Rosell S., Folkers K., Sundler F., Tornqvist K. A specific substance P antagonist blocks smooth muscle contractions induced by non-cholinergic, non-adrenergic nerve stimulation. Nature. 1981 Dec 3;294(5840):467–469. doi: 10.1038/294467a0. [DOI] [PubMed] [Google Scholar]
  21. Lee C. M., Campbell N. J., Williams B. J., Iversen L. L. Multiple tachykinin binding sites in peripheral tissues and in brain. Eur J Pharmacol. 1986 Nov 4;130(3):209–217. doi: 10.1016/0014-2999(86)90270-0. [DOI] [PubMed] [Google Scholar]
  22. Luheshi G., Zar A. Purinoceptor desensitization impairs but does not abolish the non-cholinergic motor transmission in rat isolated urinary bladder. Eur J Pharmacol. 1990 Aug 28;185(2-3):203–208. doi: 10.1016/0014-2999(90)90641-i. [DOI] [PubMed] [Google Scholar]
  23. Maggi C. A., Geppetti P., Santicioli P., Frilli S., Giuliani S., Furio M., Theodorsson E., Fusco B., Meli A. Tachykinin-like immunoreactivity in the mammalian urinary bladder: correlation with the functions of the capsaicin-sensitive sensory nerves. Neuroscience. 1988 Jul;26(1):233–242. doi: 10.1016/0306-4522(88)90140-6. [DOI] [PubMed] [Google Scholar]
  24. Maggi C. A., Geppetti P., Santicioli P., Spillantini M. G., Frilli S., Meli A. The correlation between sensory-efferent functions mediated by the capsaicin-sensitive neurons and substance P content of the rat urinary bladder. Neurosci Lett. 1987 May 19;76(3):351–356. doi: 10.1016/0304-3940(87)90428-9. [DOI] [PubMed] [Google Scholar]
  25. Maggi C. A., Giuliani S., Santicioli P., Abelli L., Meli A. Visceromotor responses to calcitonin gene-related peptide (CGRP) in the rat lower urinary tract: evidence for a transmitter role in the capsaicin-sensitive nerves of the ureter. Eur J Pharmacol. 1987 Nov 3;143(1):73–82. doi: 10.1016/0014-2999(87)90736-9. [DOI] [PubMed] [Google Scholar]
  26. Maggi C. A., Meli A. The role of neuropeptides in the regulation of the micturition reflex. J Auton Pharmacol. 1986 Jun;6(2):133–162. doi: 10.1111/j.1474-8673.1986.tb00640.x. [DOI] [PubMed] [Google Scholar]
  27. Maggi C. A., Meli A. The sensory-efferent function of capsaicin-sensitive sensory neurons. Gen Pharmacol. 1988;19(1):1–43. doi: 10.1016/0306-3623(88)90002-x. [DOI] [PubMed] [Google Scholar]
  28. Maggi C. A., Parlani M., Astolfi M., Santicioli P., Rovero P., Abelli L., Somma V., Giuliani S., Regoli D., Patacchini R. Neurokinin receptors in the rat lower urinary tract. J Pharmacol Exp Ther. 1988 Jul;246(1):308–315. [PubMed] [Google Scholar]
  29. Maggi C. A., Patacchini R., Giuliani S., Rovero P., Dion S., Regoli D., Giachetti A., Meli A. Competitive antagonists discriminate between NK2 tachykinin receptor subtypes. Br J Pharmacol. 1990 Jul;100(3):589–592. doi: 10.1111/j.1476-5381.1990.tb15851.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Maggi C. A., Patacchini R., Tramontana M., Amann R., Giuliani S., Santicioli P. Similarities and differences in the action of resiniferatoxin and capsaicin on central and peripheral endings of primary sensory neurons. Neuroscience. 1990;37(2):531–539. doi: 10.1016/0306-4522(90)90421-y. [DOI] [PubMed] [Google Scholar]
  31. Maggi C. A., Santicioli P., Geppetti P., Giuliani S., Patacchini R., Frilli S., Grassi J., Meli A. Involvement of a peripheral site of action in the early phase of neuropeptide depletion following capsaicin desensitization. Brain Res. 1987 Dec 15;436(2):402–406. doi: 10.1016/0006-8993(87)91688-x. [DOI] [PubMed] [Google Scholar]
  32. Maggi C. A., Santicioli P., Meli A. Evidence for the involvement of endogenous substance P in the motor effects of capsaicin on the rat urinary bladder. J Pharm Pharmacol. 1985 Mar;37(3):203–204. doi: 10.1111/j.2042-7158.1985.tb05042.x. [DOI] [PubMed] [Google Scholar]
  33. Maggi C. A. The role of peptides in the regulation of the micturition reflex: an update. Gen Pharmacol. 1991;22(1):1–24. doi: 10.1016/0306-3623(91)90304-o. [DOI] [PubMed] [Google Scholar]
  34. Mizrahi J., Dion S., D'Orléans-Juste P., Regoli D. Activities and antagonism of bombesin on urinary smooth muscles. Eur J Pharmacol. 1985 May 20;111(3):339–345. doi: 10.1016/0014-2999(85)90640-5. [DOI] [PubMed] [Google Scholar]
  35. Nagy J. I., Daddona P. E. Anatomical and cytochemical relationships of adenosine deaminase-containing primary afferent neurons in the rat. Neuroscience. 1985 Jul;15(3):799–813. doi: 10.1016/0306-4522(85)90079-x. [DOI] [PubMed] [Google Scholar]
  36. Nawa H., Kotani H., Nakanishi S. Tissue-specific generation of two preprotachykinin mRNAs from one gene by alternative RNA splicing. Nature. 1984 Dec 20;312(5996):729–734. doi: 10.1038/312729a0. [DOI] [PubMed] [Google Scholar]
  37. Nimmo A. J., Morrison J. F., Whitaker E. M. A comparison of the distribution of substance P and calcitonin gene-related peptide receptors in the rat bladder. Q J Exp Physiol. 1988 Sep;73(5):789–792. doi: 10.1113/expphysiol.1988.sp003200. [DOI] [PubMed] [Google Scholar]
  38. Ogawa T., Kanazawa I., Kimura S. Regional distribution of substance P, neurokinin alpha and neurokinin beta in rat spinal cord, nerve roots and dorsal root ganglia, and the effects of dorsal root section or spinal transection. Brain Res. 1985 Dec 16;359(1-2):152–157. doi: 10.1016/0006-8993(85)91423-4. [DOI] [PubMed] [Google Scholar]
  39. Santicioli P., Maggi C. A., Meli A. Functional evidence for the existence of a capsaicin-sensitive innervation in the rat urinary bladder. J Pharm Pharmacol. 1986 Jun;38(6):446–451. doi: 10.1111/j.2042-7158.1986.tb04608.x. [DOI] [PubMed] [Google Scholar]
  40. Su H. C., Wharton J., Polak J. M., Mulderry P. K., Ghatei M. A., Gibson S. J., Terenghi G., Morrison J. F., Ballesta J., Bloom S. R. Calcitonin gene-related peptide immunoreactivity in afferent neurons supplying the urinary tract: combined retrograde tracing and immunohistochemistry. Neuroscience. 1986 Jul;18(3):727–747. doi: 10.1016/0306-4522(86)90066-7. [DOI] [PubMed] [Google Scholar]
  41. Sweeney M. I., White T. D., Sawynok J. Morphine, capsaicin and K+ release purines from capsaicin-sensitive primary afferent nerve terminals in the spinal cord. J Pharmacol Exp Ther. 1989 Jan;248(1):447–454. [PubMed] [Google Scholar]
  42. Takano Y., Nagashima A., Masui H., Kuromizu K., Kamiya H. O. Distribution of substance K (neurokinin A) in the brain and peripheral tissues of rats. Brain Res. 1986 Mar 26;369(1-2):400–404. doi: 10.1016/0006-8993(86)90560-3. [DOI] [PubMed] [Google Scholar]
  43. Takeda Y., Takeda J., Smart B. M., Krause J. E. Regional distribution of neuropeptide gamma and other tachykinin peptides derived from the substance P gene in the rat. Regul Pept. 1990 May 21;28(3):323–333. doi: 10.1016/0167-0115(90)90030-z. [DOI] [PubMed] [Google Scholar]
  44. Too H. P., Cordova J. L., Maggio J. E. A novel radioimmunoassay for neuromedin K. I. Absence of neuromedin K-like immunoreactivity in guinea pig ileum and urinary bladder. II. Heterogeneity of tachykinins in guinea pig tissues. Regul Pept. 1989 Sep-Oct;26(2):93–105. doi: 10.1016/0167-0115(89)90001-3. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES