Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Jun;103(2):1347–1350. doi: 10.1111/j.1476-5381.1991.tb09791.x

Regulation of bradykinin receptor level by cholera toxin, pertussis toxin and forskolin in cultured human fibroblasts.

B G Etscheid 1, P H Ko 1, M L Villereal 1
PMCID: PMC1908355  PMID: 1653071

Abstract

1. The effect of bacterial toxins on bradykinin-triggered release of arachidonic acid was studied in serum-deprived human foreskin (HSWP) fibroblasts prelabelled with [3H]-arachidonic acid. An 18-h exposure of HSWP cells to cholera toxin, pertussis toxin, or forskolin enhanced the bradykinin-stimulated release of arachidonic acid and metabolites. 2. Prolonged treatment of HSWP cells with these agents also caused a 3 to 4 fold rise in cell surface [3H]-bradykinin binding. The rise was inhibited by concurrent incubation with cycloheximide or actinomycin D. In addition, cholera toxin and foreskolin increased [3H]-bradykinin binding in wildtype PC12 cells, but not in mutant PC12 cells with reduced cyclic AMP-dependent protein kinase type II activity. 3. In conclusion, cholera toxin, pertussis toxin and forskolin enhanced arachidonic acid release in response to bradykinin, and increased the number of bradykinin receptors in HSWP fibroblasts. A cyclic AMP-dependent mechanism appears to mediate the actions of the toxins and forskolin.

Full text

PDF
1347

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burch R. M., Axelrod J. Dissociation of bradykinin-induced prostaglandin formation from phosphatidylinositol turnover in Swiss 3T3 fibroblasts: evidence for G protein regulation of phospholipase A2. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6374–6378. doi: 10.1073/pnas.84.18.6374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DiPasquale A., McGuire J., Varga J. M. The number of receptors for beta-melanocyte stimulating hormone in Cloudman melanoma cells is increased by dibutyryl adenosine 3':5'-cyclic monophosphate or cholera toxin. Proc Natl Acad Sci U S A. 1977 Feb;74(2):601–605. doi: 10.1073/pnas.74.2.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Downward J., de Gunzburg J., Riehl R., Weinberg R. A. p21ras-induced responsiveness of phosphatidylinositol turnover to bradykinin is a receptor number effect. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5774–5778. doi: 10.1073/pnas.85.16.5774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Etscheid B. G., Villereal M. L. Coupling of bradykinin receptors to phospholipase C in cultured fibroblasts is mediated by a G-protein. J Cell Physiol. 1989 Aug;140(2):264–271. doi: 10.1002/jcp.1041400211. [DOI] [PubMed] [Google Scholar]
  5. Golos T. G., Strauss J. F., 3rd Regulation of low density lipoprotein receptor gene expression in cultured human granulosa cells: roles of human chorionic gonadotropin, 8-bromo-3',5'-cyclic adenosine monophosphate, and protein synthesis. Mol Endocrinol. 1987 Apr;1(4):321–326. doi: 10.1210/mend-1-4-321. [DOI] [PubMed] [Google Scholar]
  6. Golos T. G., Strauss J. F., 3rd Regulation of low density lipoprotein receptor synthesis in cultured luteinized human granulosa cells by human chorionic gonadotropin and 8-bromo-cyclic AMP. J Biol Chem. 1985 Nov 25;260(27):14399–14402. [PubMed] [Google Scholar]
  7. Hojvat S. A., Musch M. W., Miller R. J. Stimulation of prostaglandin production in rabbit ileal mucosa by bradykinin. J Pharmacol Exp Ther. 1983 Sep;226(3):749–755. [PubMed] [Google Scholar]
  8. Hong S. L., Levine L. Stimulation of prostaglandin synthesis by bradykinin and thrombin and their mechanisms of action on MC5-5 fibroblasts. J Biol Chem. 1976 Sep 25;251(18):5814–5816. [PubMed] [Google Scholar]
  9. Kaya H., Patton G. M., Hong S. L. Bradykinin-induced activation of phospholipase A2 is independent of the activation of polyphosphoinositide-hydrolyzing phospholipase C. J Biol Chem. 1989 Mar 25;264(9):4972–4977. [PubMed] [Google Scholar]
  10. Malkiel S., Hargis B. J. Sensitization of the mouse to bradykinin. Proc Soc Exp Biol Med. 1967 Jun;125(2):565–567. doi: 10.3181/00379727-125-32147. [DOI] [PubMed] [Google Scholar]
  11. McGiff J. C., Itskovitz H. D., Terragno A., Wong P. Y. Modulation and mediation of the action of the renal kallikrein-kinin system by prostaglandins. Fed Proc. 1976 Feb;35(2):175–180. [PubMed] [Google Scholar]
  12. Montminy M. R., Sevarino K. A., Wagner J. A., Mandel G., Goodman R. H. Identification of a cyclic-AMP-responsive element within the rat somatostatin gene. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6682–6686. doi: 10.1073/pnas.83.18.6682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Moss J., Hom B. E., Hewlett E. L., Tsai S. C., Adamik R., Halpern J. L., Price S. R., Manganiello V. C. Mechanism of enhanced sensitivity to bradykinin in pertussis toxin-treated fibroblasts: toxin increases bradykinin-stimulated prostaglandin formation. Mol Pharmacol. 1988 Sep;34(3):279–285. [PubMed] [Google Scholar]
  14. Moss J., Vaughan M. ADP-ribosylation of guanyl nucleotide-binding regulatory proteins by bacterial toxins. Adv Enzymol Relat Areas Mol Biol. 1988;61:303–379. doi: 10.1002/9780470123072.ch6. [DOI] [PubMed] [Google Scholar]
  15. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  16. Murayama T., Ui M. Receptor-mediated inhibition of adenylate cyclase and stimulation of arachidonic acid release in 3T3 fibroblasts. Selective susceptibility to islet-activating protein, pertussis toxin. J Biol Chem. 1985 Jun 25;260(12):7226–7233. [PubMed] [Google Scholar]
  17. Narumiya S., Hirata M., Nanba T., Nikaido T., Taniguchi Y., Tagaya Y., Okada M., Mitsuya H., Yodoi J. Activation of interleukin-2 receptor gene by forskolin and cyclic AMP analogues. Biochem Biophys Res Commun. 1987 Mar 13;143(2):753–760. doi: 10.1016/0006-291x(87)91418-5. [DOI] [PubMed] [Google Scholar]
  18. Needleman P., Key S. L., Denny S. E., Isakson P. C., Marshall G. R. Mechanism and modification of bradykinin-induced coronary vasodilation. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2060–2063. doi: 10.1073/pnas.72.6.2060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Parries G., Hoebel R., Racker E. Opposing effects of a ras oncogene on growth factor-stimulated phosphoinositide hydrolysis: desensitization to platelet-derived growth factor and enhanced sensitivity to bradykinin. Proc Natl Acad Sci U S A. 1987 May;84(9):2648–2652. doi: 10.1073/pnas.84.9.2648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Roscher A. A., Manganiello V. C., Jelsema C. L., Moss J. Receptors for bradykinin in intact cultured human fibroblasts. Identification and characterization by direct binding study. J Clin Invest. 1983 Aug;72(2):626–635. doi: 10.1172/JCI111012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Thomopoulos P., Kosmakos F. C., Pastan I., Lovelace E. Cyclic AMP increases the concentration of insulin receptors in cultured fibroblasts and lymphocytes. Biochem Biophys Res Commun. 1977 Mar 21;75(2):246–252. doi: 10.1016/0006-291x(77)91035-x. [DOI] [PubMed] [Google Scholar]
  22. Van Buskirk R., Corcoran T., Wagner J. A. Clonal variants of PC12 pheochromocytoma cells with defects in cAMP-dependent protein kinases induce ornithine decarboxylase in response to nerve growth factor but not to adenosine agonists. Mol Cell Biol. 1985 Aug;5(8):1984–1992. doi: 10.1128/mcb.5.8.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Volonté C., Parries G. S., Racker E. Stimulation of inositol incorporation into lipids of PC12 cells by nerve growth factor and bradykinin. J Neurochem. 1988 Oct;51(4):1156–1162. doi: 10.1111/j.1471-4159.1988.tb03081.x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES