Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Jun;103(2):1441–1448. doi: 10.1111/j.1476-5381.1991.tb09808.x

Endothelial modulation and changes in endothelin pressor activity during hypoxia in the rat isolated perfused superior mesenteric arterial bed.

S A Douglas 1, S James 1, C R Hiley 1
PMCID: PMC1908378  PMID: 1884099

Abstract

1. The isolated superior mesenteric arterial bed of the rat, perfused with Krebs-Henseleit solution containing 10 microM indomethacin, was used to study the effects of reducing dissolved O2 tension on the pressor responses to endothelin-1, endothelin-3 and sarafotoxin S6b. The modulation of these responses by the endothelium was investigated by removing the intima with the detergent CHAPS and, for endothelin-1, by inhibiting nitric oxide production with N omega-nitro-L-arginine methyl ester (L-NAME). Comparison was made with the effects of lowering O2 tension on the pressor responses to noradrenaline and 5-hydroxytryptamine. 2. Lowering the perfusate O2 tension from 551 +/- 2 mmHg to 14.0 +/- 0.5 mmHg did not change the ED50 for endothelin-1 but its maximal responses (Rmax) were increased by 2.1 and 2.7 fold, respectively, in the presence and absence of endothelium. The Rmax values for endothelin-3 were also greater in hypoxia either in the presence (by 2.3 fold) or absence of the endothelium (by 1.6 times) but those for sarafotoxin S6b were only enhanced significantly by hypoxia in the absence of the intima. hypoxia reduced the potencies of endothelin-3 and sarafotoxin S6b whether or not endothelium was present. 3. Endothelial destruction, whether in hypoxic or oxygenated conditions, increased the Rmax values for endothelin-1 and endothelin-3; at both O2 tensions those for endothelin-3 increased more than those for endothelin-1. The ED50 for endothelin-1 was unchanged by destroying the endothelium but endothelin-3 was less potent in the absence of an endothelium than in its presence.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1441

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aceves J., Mariscal S., Morrison K. E., Young J. M. The binding of doxepin to histamine H1-receptors in guinea-pig and rat brain. Br J Pharmacol. 1985 Feb;84(2):417–424. doi: 10.1111/j.1476-5381.1985.tb12925.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armstead W. M., Mirro R., Leffler C. W., Busija D. W. Influence of endothelin on piglet cerebral microcirculation. Am J Physiol. 1989 Aug;257(2 Pt 2):H707–H710. doi: 10.1152/ajpheart.1989.257.2.H707. [DOI] [PubMed] [Google Scholar]
  3. De Mey J. G., Vanhoutte P. M. Anoxia and endothelium-dependent reactivity of the canine femoral artery. J Physiol. 1983 Feb;335:65–74. doi: 10.1113/jphysiol.1983.sp014519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Douglas S. A., Hiley C. R. Endothelium-dependent vascular activities of endothelin-like peptides in the isolated superior mesenteric arterial bed of the rat. Br J Pharmacol. 1990 Sep;101(1):81–88. doi: 10.1111/j.1476-5381.1990.tb12093.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  6. Hieda H. S., Gomez-Sanchez C. E. Hypoxia increases endothelin release in bovine endothelial cells in culture, but epinephrine, norepinephrine, serotonin, histamine and angiotensin II do not. Life Sci. 1990;47(3):247–251. doi: 10.1016/0024-3205(90)90327-n. [DOI] [PubMed] [Google Scholar]
  7. Hobbs A. J., Gibson A. L-NG-nitro-arginine and its methyl ester are potent inhibitors of non-adrenergic, non-cholinergic transmission in the rat anococcygeus. Br J Pharmacol. 1990 Aug;100(4):749–752. doi: 10.1111/j.1476-5381.1990.tb14086.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Holden W. E., McCall E. Hypoxia-induced contractions of porcine pulmonary artery strips depend on intact endothelium. Exp Lung Res. 1984;7(2):101–112. doi: 10.3109/01902148409069671. [DOI] [PubMed] [Google Scholar]
  9. Kelm M., Schrader J. Control of coronary vascular tone by nitric oxide. Circ Res. 1990 Jun;66(6):1561–1575. doi: 10.1161/01.res.66.6.1561. [DOI] [PubMed] [Google Scholar]
  10. Kourembanas S., Hannan R. L., Faller D. V. Oxygen tension regulates the expression of the platelet-derived growth factor-B chain gene in human endothelial cells. J Clin Invest. 1990 Aug;86(2):670–674. doi: 10.1172/JCI114759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kwon N. S., Nathan C. F., Gilker C., Griffith O. W., Matthews D. E., Stuehr D. J. L-citrulline production from L-arginine by macrophage nitric oxide synthase. The ureido oxygen derives from dioxygen. J Biol Chem. 1990 Aug 15;265(23):13442–13445. [PubMed] [Google Scholar]
  12. Liu J. J., Casley D. J., Nayler W. G. Ischaemia causes externalization of endothelin-1 binding sites in rat cardiac membranes. Biochem Biophys Res Commun. 1989 Nov 15;164(3):1220–1225. doi: 10.1016/0006-291x(89)91799-3. [DOI] [PubMed] [Google Scholar]
  13. Liu J. J., Gu X. H., Casley D. J., Nayler W. G. Reoxygenation, but neither hypoxia nor intermittent ischemia, increases [125I]endothelin-1 binding to rat cardiac membranes. J Cardiovasc Pharmacol. 1990 Mar;15(3):436–443. doi: 10.1097/00005344-199003000-00014. [DOI] [PubMed] [Google Scholar]
  14. Liu J., Chen R., Casley D. J., Nayler W. G. Ischemia and reperfusion increase 125I-labeled endothelin-1 binding in rat cardiac membranes. Am J Physiol. 1990 Mar;258(3 Pt 2):H829–H835. doi: 10.1152/ajpheart.1990.258.3.H829. [DOI] [PubMed] [Google Scholar]
  15. MCGREGOR D. D. THE EFFECT OF SYMPATHETIC NERVE STIMULATION OF VASOCONSTRICTOR RESPONSES IN PERFUSED MESENTERIC BLOOD VESSELS OF THE RAT. J Physiol. 1965 Mar;177:21–30. doi: 10.1113/jphysiol.1965.sp007572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. MacLean M. R., Randall M. D., Hiley C. R. Effects of moderate hypoxia, hypercapnia and acidosis on haemodynamic changes induced by endothelin-1 in the pithed rat. Br J Pharmacol. 1989 Nov;98(3):1055–1065. doi: 10.1111/j.1476-5381.1989.tb14638.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moore P. K., al-Swayeh O. A., Chong N. W., Evans R. A., Gibson A. L-NG-nitro arginine (L-NOARG), a novel, L-arginine-reversible inhibitor of endothelium-dependent vasodilatation in vitro. Br J Pharmacol. 1990 Feb;99(2):408–412. doi: 10.1111/j.1476-5381.1990.tb14717.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ogawa S., Gerlach H., Esposito C., Pasagian-Macaulay A., Brett J., Stern D. Hypoxia modulates the barrier and coagulant function of cultured bovine endothelium. Increased monolayer permeability and induction of procoagulant properties. J Clin Invest. 1990 Apr;85(4):1090–1098. doi: 10.1172/JCI114540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Palmer R. M., Ashton D. S., Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988 Jun 16;333(6174):664–666. doi: 10.1038/333664a0. [DOI] [PubMed] [Google Scholar]
  20. Pearce W. J., Ashwal S., Cuevas J. Direct effects of graded hypoxia on intact and denuded rabbit cranial arteries. Am J Physiol. 1989 Sep;257(3 Pt 2):H824–H833. doi: 10.1152/ajpheart.1989.257.3.H824. [DOI] [PubMed] [Google Scholar]
  21. Pearce W. J., Reynier-Rebuffel A. M., Lee J., Aubineau P., Ignarro L., Seylaz J. Effects of methylene blue on hypoxic cerebral vasodilatation in the rabbit. J Pharmacol Exp Ther. 1990 Aug;254(2):616–625. [PubMed] [Google Scholar]
  22. Pohl U., Busse R. Hypoxia stimulates release of endothelium-derived relaxant factor. Am J Physiol. 1989 Jun;256(6 Pt 2):H1595–H1600. doi: 10.1152/ajpheart.1989.256.6.H1595. [DOI] [PubMed] [Google Scholar]
  23. Rakugi H., Nakamaru M., Tabuchi Y., Nagano M., Mikami H., Ogihara T. Endothelin stimulates the release of prostacyclin from rat mesenteric arteries. Biochem Biophys Res Commun. 1989 Apr 28;160(2):924–928. doi: 10.1016/0006-291x(89)92523-0. [DOI] [PubMed] [Google Scholar]
  24. Rakugi H., Tabuchi Y., Nakamaru M., Nagano M., Higashimori K., Mikami H., Ogihara T., Suzuki N. Evidence for endothelin-1 release from resistance vessels of rats in response to hypoxia. Biochem Biophys Res Commun. 1990 Jun 29;169(3):973–977. doi: 10.1016/0006-291x(90)91989-6. [DOI] [PubMed] [Google Scholar]
  25. Randall M. D., Douglas S. A., Hiley C. R. Vascular activities of endothelin-1 and some alanyl substituted analogues in resistance beds of the rat. Br J Pharmacol. 1989 Oct;98(2):685–699. doi: 10.1111/j.1476-5381.1989.tb12644.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rees D. D., Cellek S., Palmer R. M., Moncada S. Dexamethasone prevents the induction by endotoxin of a nitric oxide synthase and the associated effects on vascular tone: an insight into endotoxin shock. Biochem Biophys Res Commun. 1990 Dec 14;173(2):541–547. doi: 10.1016/s0006-291x(05)80068-3. [DOI] [PubMed] [Google Scholar]
  27. Reynolds E. E., Mok L. L. Role of thromboxane A2/prostaglandin H2 receptor in the vasoconstrictor response of rat aorta to endothelin. J Pharmacol Exp Ther. 1990 Mar;252(3):915–921. [PubMed] [Google Scholar]
  28. Richards J. M., Gibson I. F., Martin W. Effects of hypoxia and metabolic inhibitors on production of prostacyclin and endothelium-derived relaxing factor by pig aortic endothelial cells. Br J Pharmacol. 1991 Jan;102(1):203–209. doi: 10.1111/j.1476-5381.1991.tb12154.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rodman D. M., Yamaguchi T., Hasunuma K., O'Brien R. F., McMurtry I. F. Effects of hypoxia on endothelium-dependent relaxation of rat pulmonary artery. Am J Physiol. 1990 Apr;258(4 Pt 1):L207–L214. doi: 10.1152/ajplung.1990.258.4.L207. [DOI] [PubMed] [Google Scholar]
  30. Rubanyi G. M., Vanhoutte P. M. Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium. J Physiol. 1985 Jul;364:45–56. doi: 10.1113/jphysiol.1985.sp015728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schmidt H. H., Nau H., Wittfoht W., Gerlach J., Prescher K. E., Klein M. M., Niroomand F., Böhme E. Arginine is a physiological precursor of endothelium-derived nitric oxide. Eur J Pharmacol. 1988 Sep 13;154(2):213–216. doi: 10.1016/0014-2999(88)90101-x. [DOI] [PubMed] [Google Scholar]
  32. Tabuchi Y., Nakamaru M., Rakugi H., Nagano M., Mikami H., Ogihara T. Endothelin inhibits presynaptic adrenergic neurotransmission in rat mesenteric artery. Biochem Biophys Res Commun. 1989 Jun 15;161(2):803–808. doi: 10.1016/0006-291x(89)92671-5. [DOI] [PubMed] [Google Scholar]
  33. Vanhoutte P. M., Auch-Schwelk W., Boulanger C., Janssen P. A., Katusic Z. S., Komori K., Miller V. M., Schini V. B., Vidal M. Does endothelin-1 mediate endothelium-dependent contractions during anoxia? J Cardiovasc Pharmacol. 1989;13 (Suppl 5):S124–S142. doi: 10.1097/00005344-198900135-00031. [DOI] [PubMed] [Google Scholar]
  34. Warner T. D., de Nucci G., Vane J. R. Rat endothelin is a vasodilator in the isolated perfused mesentery of the rat. Eur J Pharmacol. 1989 Jan 17;159(3):325–326. doi: 10.1016/0014-2999(89)90167-2. [DOI] [PubMed] [Google Scholar]
  35. Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES