Abstract
1. Although (+)-tubocurarine (Tc) is classically considered to be a competitive antagonist at the neuromuscular junction, kinetic details of the interaction remain unclear. 2. We studied the competitive action of Tc on the nicotinic receptor at the frog neuromuscular junction using a quantitative analysis of the generation phase of miniature endplate currents (m.e.p.cs) recorded in Ringer solution (20 degrees C) under voltage clamp (-90 mV) in the absence or presence of 1-5 microM Tc. Under control conditions four neurotransmission parameters were estimated by non-linear regression using a mathematical model of synaptic transmission incorporating transmitter release, diffusion, hydrolysis, receptor binding and channel gating. These parameters were then used in a further regression to estimate binding rate constants for Tc at the same endplate. Allowance was made for open channel block by Tc, which under the conditions of this study was only a small component of total blockade. 3. The results suggest that Tc binds to the two agonist recognition sites on the nicotinic receptor with equal affinity (stoichiometric KDs of 2.2 and 8.8 microM), and that most of the functional blockade at concentrations up to 5 microM is due to occupancy of only one site. 4. The association rate constant for Tc binding to sites on the nicotinic acetylcholine receptor appears to be very fast (k+D = 8.9 x 10(8) M-1 s-1) and comparable to that for acetylcholine (ACh). 5. In the brief time during which an m.e.p.c. is generated (approximately 200 microseconds, reversal of Tc blockade by transiently high concentrations of ACh seems to be kinetically limited.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams P. R. Acetylcholine receptor kinetics. J Membr Biol. 1981 Feb 28;58(3):161–174. doi: 10.1007/BF01870902. [DOI] [PubMed] [Google Scholar]
- Balser J. R., Roden D. M., Bennett P. B. Global parameter optimization for cardiac potassium channel gating models. Biophys J. 1990 Mar;57(3):433–444. doi: 10.1016/S0006-3495(90)82560-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benveniste M., Clements J., Vyklický L., Jr, Mayer M. L. A kinetic analysis of the modulation of N-methyl-D-aspartic acid receptors by glycine in mouse cultured hippocampal neurones. J Physiol. 1990 Sep;428:333–357. doi: 10.1113/jphysiol.1990.sp018215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blount P., Merlie J. P. Molecular basis of the two nonequivalent ligand binding sites of the muscle nicotinic acetylcholine receptor. Neuron. 1989 Sep;3(3):349–357. doi: 10.1016/0896-6273(89)90259-6. [DOI] [PubMed] [Google Scholar]
- Bowman W. C., Marshall I. G., Gibb A. J., Harborne A. J. Feedback control of transmitter release at the neuromuscular junction. Trends Pharmacol Sci. 1988 Jan;9(1):16–20. doi: 10.1016/0165-6147(88)90236-2. [DOI] [PubMed] [Google Scholar]
- Bradley R. J., Edge M. T., Chau W. C. The alpha-neurotoxin erabutoxin b causes fade at the rat end-plate. Eur J Pharmacol. 1990 Jan 25;176(1):11–21. doi: 10.1016/0014-2999(90)90127-r. [DOI] [PubMed] [Google Scholar]
- Brett R. S., Dilger J. P., Adams P. R., Lancaster B. A method for the rapid exchange of solutions bathing excised membrane patches. Biophys J. 1986 Nov;50(5):987–992. doi: 10.1016/S0006-3495(86)83539-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen C. F., Hess P. Mechanism of gating of T-type calcium channels. J Gen Physiol. 1990 Sep;96(3):603–630. doi: 10.1085/jgp.96.3.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colquhoun D., Dreyer F., Sheridan R. E. The actions of tubocurarine at the frog neuromuscular junction. J Physiol. 1979 Aug;293:247–284. doi: 10.1113/jphysiol.1979.sp012888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colquhoun D., Sheridan R. E. The effect of tubocurarine competition on the kinetics of agonist action on the nicotinic receptor. Br J Pharmacol. 1982 Jan;75(1):77–86. doi: 10.1111/j.1476-5381.1982.tb08759.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Covarrubias M., Prinz H., Meyers H. W., Maelicke A. Equilibrium binding of cholinergic ligands to the membrane-bound acetylcholine receptor. J Biol Chem. 1986 Nov 15;261(32):14955–14964. [PubMed] [Google Scholar]
- Dudel J., Franke C., Hatt H. Rapid activation, desensitization, and resensitization of synaptic channels of crayfish muscle after glutamate pulses. Biophys J. 1990 Mar;57(3):533–545. doi: 10.1016/S0006-3495(90)82569-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edeson R. O., Madsen B. W., Milne R. K., Le Dain A. C. Verapamil, neuromuscular transmission and the nicotinic receptor. Eur J Pharmacol. 1988 Jul 7;151(2):301–306. doi: 10.1016/0014-2999(88)90812-6. [DOI] [PubMed] [Google Scholar]
- JENKINSON D. H. The antagonism between tubocurarine and substances which depolarize the motor end-plate. J Physiol. 1960 Jul;152:309–324. doi: 10.1113/jphysiol.1960.sp006489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaramillo F., Schuetze S. M. Kinetic differences between embryonic- and adult-type acetylcholine receptors in rat myotubes. J Physiol. 1988 Feb;396:267–296. doi: 10.1113/jphysiol.1988.sp016962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karpen J. W., Hess G. P. Acetylcholine receptor inhibition by d-tubocurarine involves both a competitive and a noncompetitive binding site as determined by stopped-flow measurements of receptor-controlled ion flux in membrane vesicles. Biochemistry. 1986 Apr 8;25(7):1786–1792. doi: 10.1021/bi00355a050. [DOI] [PubMed] [Google Scholar]
- Klotz I. M. Ligand--receptor interactions: facts and fantasies. Q Rev Biophys. 1985 Aug;18(3):227–259. doi: 10.1017/s0033583500000354. [DOI] [PubMed] [Google Scholar]
- Krouse M. E., Lester H. A., Wassermann N. H., Erlanger B. F. Rates and equilibria for a photoisomerizable antagonist at the acetylcholine receptor of Electrophorus electroplaques. J Gen Physiol. 1985 Aug;86(2):235–256. doi: 10.1085/jgp.86.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuba K., Albuquerque E. X., Daly J., Barnard E. A. A study of the irreversible cholinesterase inhibitor, diisopropylfluorophosphate, on time course of end-plate currents in frog sartorius muscle. J Pharmacol Exp Ther. 1974 May;189(2):499–512. [PubMed] [Google Scholar]
- Lambert J. J., Volle R. L., Henderson E. G. An attempt to distinguish between the actions of neuromuscular blocking drugs on the acetylcholine receptor and on its associated ionic channel. Proc Natl Acad Sci U S A. 1980 Aug;77(8):5003–5007. doi: 10.1073/pnas.77.8.5003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Land B. R., Harris W. V., Salpeter E. E., Salpeter M. M. Diffusion and binding constants for acetylcholine derived from the falling phase of miniature endplate currents. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1594–1598. doi: 10.1073/pnas.81.5.1594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Land B. R., Salpeter E. E., Salpeter M. M. Acetylcholine receptor site density affects the rising phase of miniature endplate currents. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3736–3740. doi: 10.1073/pnas.77.6.3736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Land B. R., Salpeter E. E., Salpeter M. M. Kinetic parameters for acetylcholine interaction in intact neuromuscular junction. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7200–7204. doi: 10.1073/pnas.78.11.7200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Madsen B. W., Edeson R. O., Lam H. S., Milne R. K. Numerical simulation of miniature endplate currents. Neurosci Lett. 1984 Jul 13;48(1):67–74. doi: 10.1016/0304-3940(84)90290-8. [DOI] [PubMed] [Google Scholar]
- Madsen B. W., Edeson R. O., Milne R. K. Distribution of exponentiality in miniature endplate current decay. Brain Res. 1985 Dec 23;360(1-2):224–234. doi: 10.1016/0006-8993(85)91238-7. [DOI] [PubMed] [Google Scholar]
- Madsen B. W., Edeson R. O., Milne R. K. Neurotransmission parameters estimated from miniature endplate current growth phase. Brain Res. 1987 Feb 3;402(2):387–392. doi: 10.1016/0006-8993(87)90052-7. [DOI] [PubMed] [Google Scholar]
- Madsen B. W., Edeson R. O. Understanding receptor kinetics has some way to go. Nicotinic receptors and the elusive beta. Trends Pharmacol Sci. 1988 Sep;9(9):315–316. doi: 10.1016/0165-6147(88)90098-3. [DOI] [PubMed] [Google Scholar]
- McCarthy M. P., Stroud R. M. Conformational states of the nicotinic acetylcholine receptor from Torpedo californica induced by the binding of agonists, antagonists, and local anesthetics. Equilibrium measurements using tritium-hydrogen exchange. Biochemistry. 1989 Jan 10;28(1):40–48. doi: 10.1021/bi00427a007. [DOI] [PubMed] [Google Scholar]
- Meshul C. K., Pappas G. D. The relationship of pinocytosis and synaptic vesicles at the frog neuromuscular junction. Brain Res. 1984 Jan 2;290(1):1–18. doi: 10.1016/0006-8993(84)90730-3. [DOI] [PubMed] [Google Scholar]
- Morris C. E., Montpetit M. R., Sigurdson W. J., Iwasa K. Activation by curare of acetylcholine receptor channels in a murine skeletal muscle cell line. Can J Physiol Pharmacol. 1989 Feb;67(2):152–158. doi: 10.1139/y89-025. [DOI] [PubMed] [Google Scholar]
- Neubig R. R., Cohen J. B. Equilibrium binding of [3H]tubocurarine and [3H]acetylcholine by Torpedo postsynaptic membranes: stoichiometry and ligand interactions. Biochemistry. 1979 Nov 27;18(24):5464–5475. doi: 10.1021/bi00591a032. [DOI] [PubMed] [Google Scholar]
- Parnas H., Flashner M., Spira M. E. Sequential model to describe the nicotinic synaptic current. Biophys J. 1989 May;55(5):875–884. doi: 10.1016/S0006-3495(89)82886-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prinz H., Maelicke A. Interaction of cholinergic ligands with the purified acetylcholine receptor protein. I. Equilibrium binding studies. J Biol Chem. 1983 Sep 10;258(17):10263–10271. [PubMed] [Google Scholar]
- Prinz H., Maelicke A. Interaction of cholinergic ligands with the purified acetylcholine receptor protein. II. Kinetic studies. J Biol Chem. 1983 Sep 10;258(17):10273–10282. [PubMed] [Google Scholar]
- Quast U., Schimerlik M., Lee T., Witzemann T. L., Blanchard S., Raftery M. A. Ligand-induced conformation changes in Torpedo californica membrane-bound acetylcholine receptor. Biochemistry. 1978 Jun 13;17(12):2405–2414. doi: 10.1021/bi00605a024. [DOI] [PubMed] [Google Scholar]
- Sine S. M. Functional properties of human skeletal muscle acetylcholine receptors expressed by the TE671 cell line. J Biol Chem. 1988 Dec 5;263(34):18052–18062. [PubMed] [Google Scholar]
- Sine S. M., Taylor P. Relationship between reversible antagonist occupancy and the functional capacity of the acetylcholine receptor. J Biol Chem. 1981 Jul 10;256(13):6692–6699. [PubMed] [Google Scholar]
- Takeda K., Trautmann A. A patch-clamp study of the partial agonist actions of tubocurarine on rat myotubes. J Physiol. 1984 Apr;349:353–374. doi: 10.1113/jphysiol.1984.sp015160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wathey J. C., Nass M. M., Lester H. A. Numerical reconstruction of the quantal event at nicotinic synapses. Biophys J. 1979 Jul;27(1):145–164. doi: 10.1016/S0006-3495(79)85208-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waud D. R. Pharmacological receptors. Pharmacol Rev. 1968 Jun;20(2):49–88. [PubMed] [Google Scholar]
- Weiland G., Taylor P. Ligand specificity of state transitions in the cholinergic receptor: behavior of agonists and antagonists. Mol Pharmacol. 1979 Mar;15(2):197–212. [PubMed] [Google Scholar]
