Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Jun;103(2):1339–1346. doi: 10.1111/j.1476-5381.1991.tb09790.x

Inhibition of eosinophil cyclic nucleotide PDE activity and opsonised zymosan-stimulated respiratory burst by 'type IV'-selective PDE inhibitors.

G Dent 1, M A Giembycz 1, K F Rabe 1, P J Barnes 1
PMCID: PMC1908391  PMID: 1653070

Abstract

1. The cyclic nucleotide phosphodiesterase (PDE) of guinea-pig eosinophils was partially characterized and the effects of selective inhibitors of PDE isoenzymes upon opsonized zymosan (OZ)-stimulated respiratory burst were studied. 2. PDE activity in eosinophil lysates appeared to be membrane-associated, displayed substrate specificity for adenosine 3':5' cyclic monophosphate (cyclic AMP) versus guanosine 3':5' cyclic monophosphate (cyclic GMP) and was insensitive to cyclic GMP or Ca2+ and calmodulin. 3. The non-selective PDE inhibitor, 3-isobutyl-1-methylxanthine caused a concentration-dependent inhibition of both OZ-stimulated hydrogen peroxide (H2O2) generation and cyclic AMP hydrolysis. The type IV-selective PDE inhibitors, rolipram and denbufylline, also inhibited H2O2 generation and cyclic AMP hydrolysis in a concentration-dependent manner whilst SK&F 94120 and Org 9935 (type III-selective) and zaprinast (type Ia or V-selective) were ineffective. 4. Dibutyryl cyclic AMP, a cell-permeable, non-hydrolysable analogue of cyclic AMP, caused a concentration-dependent inhibition of H2O2 generation stimulated by OZ. Dibutyryl cyclic GMP was ineffective. 5. It is concluded that eosinophil respiratory burst activity induced by OZ can be regulated by intracellular cyclic AMP and that the levels of cyclic AMP are controlled exclusively by a rolipram- and denbufylline-sensitive PDE isoenzyme that resembles a type IV species.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beavo J. A. Multiple isozymes of cyclic nucleotide phosphodiesterase. Adv Second Messenger Phosphoprotein Res. 1988;22:1–38. [PubMed] [Google Scholar]
  2. Beavo J. A., Reifsnyder D. H. Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol Sci. 1990 Apr;11(4):150–155. doi: 10.1016/0165-6147(90)90066-H. [DOI] [PubMed] [Google Scholar]
  3. Bonta I. L., Adolfs M. J., Fieren M. W. Cyclic AMP levels and their regulation by prostaglandins in peritoneal macrophages of rats and humans. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1984;17:615–620. [PubMed] [Google Scholar]
  4. Brothers V. M., Walker N., Bourne H. R. Increased cyclic nucleotide phosphodiesterase activity in a mutant S49 lymphoma cell. Characterization and comparison with wild type enzyme activity. J Biol Chem. 1982 Aug 25;257(16):9349–9355. [PubMed] [Google Scholar]
  5. Busse W. W., Sosman J. M. Isoproterenol inhibition of isolated human neutrophil function. J Allergy Clin Immunol. 1984 Mar;73(3):404–410. doi: 10.1016/0091-6749(84)90416-0. [DOI] [PubMed] [Google Scholar]
  6. Corda D., Luini A., Garattini S. Selectivity of action can be achieved with compounds acting at second messenger targets. Trends Pharmacol Sci. 1990 Dec;11(12):471–473. doi: 10.1016/0165-6147(90)90133-s. [DOI] [PubMed] [Google Scholar]
  7. Degerman E., Belfrage P., Newman A. H., Rice K. C., Manganiello V. C. Purification of the putative hormone-sensitive cyclic AMP phosphodiesterase from rat adipose tissue using a derivative of cilostamide as a novel affinity ligand. J Biol Chem. 1987 Apr 25;262(12):5797–5807. [PubMed] [Google Scholar]
  8. Elliott K. R., Leonard E. J. Interactions of formylmethionyl-leucyl-phenylalanine, adenosine, and phosphodiesterase inhibitors in human monocytes. Effects on superoxide release, inositol phosphates and cAMP. FEBS Lett. 1989 Aug 28;254(1-2):94–98. doi: 10.1016/0014-5793(89)81016-6. [DOI] [PubMed] [Google Scholar]
  9. Fuller R. W., O'Malley G., Baker A. J., MacDermot J. Human alveolar macrophage activation: inhibition by forskolin but not beta-adrenoceptor stimulation or phosphodiesterase inhibition. Pulm Pharmacol. 1988;1(2):101–106. doi: 10.1016/s0952-0600(88)80006-1. [DOI] [PubMed] [Google Scholar]
  10. Galvan M., Schudt C. Actions of the phosphodiesterase inhibitor zardaverine on guinea-pig ventricular muscle. Naunyn Schmiedebergs Arch Pharmacol. 1990 Aug;342(2):221–227. doi: 10.1007/BF00166968. [DOI] [PubMed] [Google Scholar]
  11. Grady P. G., Thomas L. L. Characterization of cyclic-nucleotide phosphodiesterase activities in resting and N-formylmethionylleucylphenylalanine-stimulated human neutrophils. Biochim Biophys Acta. 1986 Mar 14;885(3):282–293. doi: 10.1016/0167-4889(86)90243-0. [DOI] [PubMed] [Google Scholar]
  12. Gristwood R. W., Eden R. J., Owen D. A., Taylor E. M. Pharmacological studies with SK&F 94120, a novel positive inotropic agent with vasodilator activity. J Pharm Pharmacol. 1986 Jun;38(6):452–459. doi: 10.1111/j.2042-7158.1986.tb04609.x. [DOI] [PubMed] [Google Scholar]
  13. Gärtner I. Separation of human eosinophils in density gradients of polyvinylpyrrolidone-coated silica gel (Percoll). Immunology. 1980 May;40(1):133–136. [PMC free article] [PubMed] [Google Scholar]
  14. HOFSTEE B. H. J. On the evaluation of the constants Vm and KM in enzyme reactions. Science. 1952 Sep 26;116(3013):329–331. doi: 10.1126/science.116.3013.329. [DOI] [PubMed] [Google Scholar]
  15. Harris A. L., Connell M. J., Ferguson E. W., Wallace A. M., Gordon R. J., Pagani E. D., Silver P. J. Role of low Km cyclic AMP phosphodiesterase inhibition in tracheal relaxation and bronchodilation in the guinea pig. J Pharmacol Exp Ther. 1989 Oct;251(1):199–206. [PubMed] [Google Scholar]
  16. Harrison S. A., Reifsnyder D. H., Gallis B., Cadd G. G., Beavo J. A. Isolation and characterization of bovine cardiac muscle cGMP-inhibited phosphodiesterase: a receptor for new cardiotonic drugs. Mol Pharmacol. 1986 May;29(5):506–514. [PubMed] [Google Scholar]
  17. Hoey M., Houslay M. D. Identification and selective inhibition of four distinct soluble forms of cyclic nucleotide phosphodiesterase activity from kidney. Biochem Pharmacol. 1990 Jul 15;40(2):193–202. doi: 10.1016/0006-2952(90)90678-e. [DOI] [PubMed] [Google Scholar]
  18. Kuehl F. A., Jr, Zanetti M. E., Soderman D. D., Miller D. K., Ham E. A. Cyclic AMP-dependent regulation of lipid mediators in white cells. A unifying concept for explaining the efficacy of theophylline in asthma. Am Rev Respir Dis. 1987 Jul;136(1):210–213. doi: 10.1164/ajrccm/136.1.210. [DOI] [PubMed] [Google Scholar]
  19. Lavan B. E., Lakey T., Houslay M. D. Resolution of soluble cyclic nucleotide phosphodiesterase isoenzymes, from liver and hepatocytes, identifies a novel IBMX-insensitive form. Biochem Pharmacol. 1989 Nov 15;38(22):4123–4136. doi: 10.1016/0006-2952(89)90694-1. [DOI] [PubMed] [Google Scholar]
  20. MacGlashan D. W., Jr, Schleimer R. P., Peters S. P., Schulman E. S., Adams G. K., Sobotka A. K., Newball H. H., Lichtenstein L. M. Comparative studies of human basophils and mast cells. Fed Proc. 1983 May 15;42(8):2504–2509. [PubMed] [Google Scholar]
  21. Nicholson C. D., Jackman S. A., Wilke R. The ability of denbufylline to inhibit cyclic nucleotide phosphodiesterase and its affinity for adenosine receptors and the adenosine re-uptake site. Br J Pharmacol. 1989 Jul;97(3):889–897. doi: 10.1111/j.1476-5381.1989.tb12029.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nielson C. P., Vestal R. E., Sturm R. J., Heaslip R. Effects of selective phosphodiesterase inhibitors on the polymorphonuclear leukocyte respiratory burst. J Allergy Clin Immunol. 1990 Nov;86(5):801–808. doi: 10.1016/s0091-6749(05)80186-1. [DOI] [PubMed] [Google Scholar]
  23. Persson C. G., Erjefält I., Gustafsson B. Xanthines--symptomatic or prophylactic in asthma? Agents Actions Suppl. 1988;23:137–155. doi: 10.1007/978-3-0348-9156-1_10. [DOI] [PubMed] [Google Scholar]
  24. Polson J. B., Krzanowski J. J., Goldman A. L., Szentivanyi A. Inhibition of human pulmonary phosphodiesterase activity by therapeutic levels of theophylline. Clin Exp Pharmacol Physiol. 1978 Sep-Oct;5(5):535–539. doi: 10.1111/j.1440-1681.1978.tb00707.x. [DOI] [PubMed] [Google Scholar]
  25. Prigent A. F., Fougier S., Nemoz G., Anker G., Pacheco H., Lugnier C., Lebec A., Stoclet J. C. Comparison of cyclic nucleotide phosphodiesterase isoforms from rat heart and bovine aorta. Separation and inhibition by selective reference phosphodiesterase inhibitors. Biochem Pharmacol. 1988 Oct 1;37(19):3671–3681. doi: 10.1016/0006-2952(88)90400-5. [DOI] [PubMed] [Google Scholar]
  26. Pyne N. J., Cooper M. E., Houslay M. D. Identification and characterization of both the cytosolic and particulate forms of cyclic GMP-stimulated cyclic AMP phosphodiesterase from rat liver. Biochem J. 1986 Mar 1;234(2):325–334. doi: 10.1042/bj2340325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pyne N. J., Cushley W., Nimmo H. G., Houslay M. D. Insulin stimulates the tyrosyl phosphorylation and activation of the 52 kDa peripheral plasma-membrane cyclic AMP phosphodiesterase in intact hepatocytes. Biochem J. 1989 Aug 1;261(3):897–904. doi: 10.1042/bj2610897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Reeves M. L., Leigh B. K., England P. J. The identification of a new cyclic nucleotide phosphodiesterase activity in human and guinea-pig cardiac ventricle. Implications for the mechanism of action of selective phosphodiesterase inhibitors. Biochem J. 1987 Jan 15;241(2):535–541. doi: 10.1042/bj2410535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Root R. K., Metcalf J., Oshino N., Chance B. H2O2 release from human granulocytes during phagocytosis. I. Documentation, quantitation, and some regulating factors. J Clin Invest. 1975 May;55(5):945–955. doi: 10.1172/JCI108024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schneider H. H., Schmiechen R., Brezinski M., Seidler J. Stereospecific binding of the antidepressant rolipram to brain protein structures. Eur J Pharmacol. 1986 Aug 7;127(1-2):105–115. doi: 10.1016/0014-2999(86)90210-4. [DOI] [PubMed] [Google Scholar]
  31. Schwartz J. P., Passonneau J. V. Cyclic AMP-mediated induction of the cyclic AMP phosphodiesterase of C-6 glioma cells. Proc Natl Acad Sci U S A. 1974 Oct;71(10):3844–3848. doi: 10.1073/pnas.71.10.3844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Spears G., Sneyd J. G., Loten E. G. A method for deriving kinetic constants for two enzymes acting on the same substrate. Biochem J. 1971 Dec;125(4):1149–1151. doi: 10.1042/bj1251149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Thompson W. J., Appleman M. M. Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry. 1971 Jan 19;10(2):311–316. [PubMed] [Google Scholar]
  34. Thompson W. J., Ross C. P., Pledger W. J., Strada S. J., Banner R. L., Hersh E. M. Cyclic adenosine 3':5'-monophosphate phosphodiesterase. Distinct forms in human lymphocytes and monocytes. J Biol Chem. 1976 Aug 25;251(16):4922–4929. [PubMed] [Google Scholar]
  35. Timouyasse L., Prigent A. F., Némoz G., Lagarde M., Pachéco H. Differential susceptibility to biological detergents of the particulate cGMP-stimulated phosphodiesterase from rat heart: preservation of the allosteric properties of the solubilized enzyme. Biochem Int. 1989 Aug;19(2):287–299. [PubMed] [Google Scholar]
  36. Torphy T. J., Cieslinski L. B. Characterization and selective inhibition of cyclic nucleotide phosphodiesterase isozymes in canine tracheal smooth muscle. Mol Pharmacol. 1990 Feb;37(2):206–214. [PubMed] [Google Scholar]
  37. Undem B. J., Torphy T. J., Goldman D., Chilton F. H. Inhibition by adenosine 3':5'-monophosphate of eicosanoid and platelet-activating factor biosynthesis in the mouse PT-18 mast cell. J Biol Chem. 1990 Apr 25;265(12):6750–6758. [PubMed] [Google Scholar]
  38. Weishaar R. E., Kobylarz-Singer D. C., Quade M. M., Steffen R. P., Kaplan H. R. Multiple molecular forms of phosphodiesterase and the regulation of cardiac muscle contractility. J Cyclic Nucleotide Protein Phosphor Res. 1986;11(7):513–527. [PubMed] [Google Scholar]
  39. Wright C. D., Kuipers P. J., Kobylarz-Singer D., Devall L. J., Klinkefus B. A., Weishaar R. E. Differential inhibition of human neutrophil functions. Role of cyclic AMP-specific, cyclic GMP-insensitive phosphodiesterase. Biochem Pharmacol. 1990 Aug 15;40(4):699–707. doi: 10.1016/0006-2952(90)90304-4. [DOI] [PubMed] [Google Scholar]
  40. Yukawa T., Kroegel C., Chanez P., Dent G., Ukena D., Chung K. F., Barnes P. J. Effect of theophylline and adenosine on eosinophil function. Am Rev Respir Dis. 1989 Aug;140(2):327–333. doi: 10.1164/ajrccm/140.2.327. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES