Abstract
1. Unlike long-term potentiation, long-term depression (LTD) in the central nervous system remains poorly understood. The present study was undertaken to investigate the role of GABAA receptors in LTD and synaptic plasticity. 2. Extracellular recordings were made in the CA1 pyramidal cell layer of rat hippocampal slices following orthodromic stimulation of Schaffer collateral fibres in stratum radiatum (0.01 Hz). 3. Muscimol induced a time- and concentration-dependent LTD of the amplitude of orthodromic potentials. Increasing the stimulation frequency from 0.01 Hz to 1 Hz for 10 s reversed the LTD induced by muscimol. Muscimol also induced LTD in the absence of electrical stimulation. 4. Adenosine decreased the spike size in a concentration-dependent manner, but failed to induce LTD. 5. Alphaxalone and 5 alpha-pregnan-3 alpha-ol-20-one at concentrations that did not have any effect themselves on the population spike (0.5 and 1 microM), potentiated the inhibitory effect of muscimol on the population spike size, including concentrations which were not effective by themselves. Both steroids were able to potentiate the ability of muscimol to induce LTD. 6. Bicuculline, 5 microM, reversed the LTD induced by muscimol, 10 microM. 7. The NMDA receptor antagonist (+/-)-2-amino-5-phosphonopentanoic acid (2-AP5), the NMDA/metabotropic antagonist 2-AP3 and selective metabotropic antagonist L-(+)-2-amino-3-phosphonopropionic acid (L(+)-AP3) failed to modify the LTD. Similarly, quisqualic acid and (1S, 3R)-aminocyclopentane dicarboxylic acid (ACPD) a selective agonist at metabotropic receptors did not induce LTD or short-term depression, whereas kynurenic acid prevented the reversal of the LTD obtained at 1 Hz.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akhondzadeh S., Stone T. W. Interaction between adenosine and GABAA receptors on hippocampal neurones. Brain Res. 1994 Dec 5;665(2):229–236. doi: 10.1016/0006-8993(94)91342-0. [DOI] [PubMed] [Google Scholar]
- Aroniadou V. A., Teyler T. J. The role of NMDA receptors in long-term potentiation (LTP) and depression (LTD) in rat visual cortex. Brain Res. 1991 Oct 18;562(1):136–143. doi: 10.1016/0006-8993(91)91197-9. [DOI] [PubMed] [Google Scholar]
- Artola A., Singer W. Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci. 1993 Nov;16(11):480–487. doi: 10.1016/0166-2236(93)90081-v. [DOI] [PubMed] [Google Scholar]
- Bashir Zafar I., Collingridge Graham L. NMDA Receptor-dependent Transient Homo- and Heterosynaptic Depression in Picrotoxin-treated Hippocampal Slices. Eur J Neurosci. 1992;4(6):485–490. doi: 10.1111/j.1460-9568.1992.tb00898.x. [DOI] [PubMed] [Google Scholar]
- Bramham C. R., Srebro B. Induction of long-term depression and potentiation by low- and high-frequency stimulation in the dentate area of the anesthetized rat: magnitude, time course and EEG. Brain Res. 1987 Mar 3;405(1):100–107. doi: 10.1016/0006-8993(87)90994-2. [DOI] [PubMed] [Google Scholar]
- Calabresi P., Maj R., Mercuri N. B., Bernardi G. Coactivation of D1 and D2 dopamine receptors is required for long-term synaptic depression in the striatum. Neurosci Lett. 1992 Aug 3;142(1):95–99. doi: 10.1016/0304-3940(92)90628-k. [DOI] [PubMed] [Google Scholar]
- Ekerot C. F., Kano M. Long-term depression of parallel fibre synapses following stimulation of climbing fibres. Brain Res. 1985 Sep 9;342(2):357–360. doi: 10.1016/0006-8993(85)91136-9. [DOI] [PubMed] [Google Scholar]
- Harrison N. L., Simmonds M. A. Modulation of the GABA receptor complex by a steroid anaesthetic. Brain Res. 1984 Dec 10;323(2):287–292. doi: 10.1016/0006-8993(84)90299-3. [DOI] [PubMed] [Google Scholar]
- Ito M. Long-term depression. Annu Rev Neurosci. 1989;12:85–102. doi: 10.1146/annurev.ne.12.030189.000505. [DOI] [PubMed] [Google Scholar]
- Kano M., Kato M. Quisqualate receptors are specifically involved in cerebellar synaptic plasticity. Nature. 1987 Jan 15;325(6101):276–279. doi: 10.1038/325276a0. [DOI] [PubMed] [Google Scholar]
- Kimura F., Nishigori A., Shirokawa T., Tsumoto T. Long-term potentiation and N-methyl-D-aspartate receptors in the visual cortex of young rats. J Physiol. 1989 Jul;414:125–144. doi: 10.1113/jphysiol.1989.sp017680. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levy W. B., Steward O. Synapses as associative memory elements in the hippocampal formation. Brain Res. 1979 Oct 19;175(2):233–245. doi: 10.1016/0006-8993(79)91003-5. [DOI] [PubMed] [Google Scholar]
- Linden D. J. Long-term synaptic depression in the mammalian brain. Neuron. 1994 Mar;12(3):457–472. doi: 10.1016/0896-6273(94)90205-4. [DOI] [PubMed] [Google Scholar]
- Lovinger D. M., Tyler E. C., Merritt A. Short- and long-term synaptic depression in rat neostriatum. J Neurophysiol. 1993 Nov;70(5):1937–1949. doi: 10.1152/jn.1993.70.5.1937. [DOI] [PubMed] [Google Scholar]
- Mager R., Ferroni S., Schubert P. Adenosine modulates a voltage-dependent chloride conductance in cultured hippocampal neurons. Brain Res. 1990 Nov 5;532(1-2):58–62. doi: 10.1016/0006-8993(90)91741-x. [DOI] [PubMed] [Google Scholar]
- Majewska M. D., Harrison N. L., Schwartz R. D., Barker J. L., Paul S. M. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science. 1986 May 23;232(4753):1004–1007. doi: 10.1126/science.2422758. [DOI] [PubMed] [Google Scholar]
- Mulkey R. M., Malenka R. C. Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron. 1992 Nov;9(5):967–975. doi: 10.1016/0896-6273(92)90248-c. [DOI] [PubMed] [Google Scholar]
- Pennartz C. M., Ameerun R. F., Groenewegen H. J., Lopes da Silva F. H. Synaptic plasticity in an in vitro slice preparation of the rat nucleus accumbens. Eur J Neurosci. 1993 Feb 1;5(2):107–117. doi: 10.1111/j.1460-9568.1993.tb00475.x. [DOI] [PubMed] [Google Scholar]
- Perkins M. N., Stone T. W. An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res. 1982 Sep 9;247(1):184–187. doi: 10.1016/0006-8993(82)91048-4. [DOI] [PubMed] [Google Scholar]
- Puia G., Vicini S., Seeburg P. H., Costa E. Influence of recombinant gamma-aminobutyric acid-A receptor subunit composition on the action of allosteric modulators of gamma-aminobutyric acid-gated Cl- currents. Mol Pharmacol. 1991 Jun;39(6):691–696. [PubMed] [Google Scholar]
- Stanton P. K., Sejnowski T. J. Associative long-term depression in the hippocampus induced by hebbian covariance. Nature. 1989 May 18;339(6221):215–218. doi: 10.1038/339215a0. [DOI] [PubMed] [Google Scholar]
- Staubli U., Lynch G. Stable depression of potentiated synaptic responses in the hippocampus with 1-5 Hz stimulation. Brain Res. 1990 Apr 9;513(1):113–118. doi: 10.1016/0006-8993(90)91096-y. [DOI] [PubMed] [Google Scholar]
- Stone T. W. Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev. 1993 Sep;45(3):309–379. [PubMed] [Google Scholar]
- Turner J. P., Simmonds M. A. Modulation of the GABAA receptor complex by steroids in slices of rat cuneate nucleus. Br J Pharmacol. 1989 Feb;96(2):409–417. doi: 10.1111/j.1476-5381.1989.tb11832.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walsh J. P. Depression of excitatory synaptic input in rat striatal neurons. Brain Res. 1993 Apr 9;608(1):123–128. doi: 10.1016/0006-8993(93)90782-i. [DOI] [PubMed] [Google Scholar]
- Yang X. D., Connor J. A., Faber D. S. Weak excitation and simultaneous inhibition induce long-term depression in hippocampal CA1 neurons. J Neurophysiol. 1994 Apr;71(4):1586–1590. doi: 10.1152/jn.1994.71.4.1586. [DOI] [PubMed] [Google Scholar]
- Yang X. D., Faber D. S. Initial synaptic efficacy influences induction and expression of long-term changes in transmission. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4299–4303. doi: 10.1073/pnas.88.10.4299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhuo M., Kandel E. R., Hawkins R. D. Nitric oxide and cGMP can produce either synaptic depression or potentiation depending on the frequency of presynaptic stimulation in the hippocampus. Neuroreport. 1994 May 9;5(9):1033–1036. doi: 10.1097/00001756-199405000-00004. [DOI] [PubMed] [Google Scholar]
