Abstract
1. The effect of acute i.v. administration of methylguanidine (MG) on mean arterial blood pressure (MABP) was investigated in anaesthetized male Wistar rats. 2. MG (1-30 mg kg-1 i.v.) produced an increase in MABP in a dose-dependent manner both in normal and in hexamethonium (5 mg kg-1, i.v)-treated rats. 3. L-Arginine (30 or 150 mg kg-1, i.v.), but not its enantiomer D-arginine (30 or 150 mg kg-1, i.v.), reversed the effect of MG on MABP in both normal and hexamethonium-treated rats. 4. L-Arginine (150 mg kg-1, i.v.) administered 2 min before MG (30 mg kg-1, i.v.) prevented the increase in MABP caused by MG in either normal or hexamethonium-treated rats. This effect was not observed with D-arginine (150 mg kg-1, i.v.). 5. Thus, the rise in MABP caused by MG in the anaesthetized rat is due to inhibition of endothelial NO-synthase activity. We speculate that the rise in the plasma concentration of endogenous MG associated with uraemia may contribute to the hypertension seen in patients with chronic renal failure.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amezcua J. L., Palmer R. M., de Souza B. M., Moncada S. Nitric oxide synthesized from L-arginine regulates vascular tone in the coronary circulation of the rabbit. Br J Pharmacol. 1989 Aug;97(4):1119–1124. doi: 10.1111/j.1476-5381.1989.tb12569.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker L. R., Marshall R. D. A reinvestigation of methylguanidine concentrations in sera from normal and uraemic subjects. Clin Sci. 1971 Dec;41(6):563–568. doi: 10.1042/cs0410563. [DOI] [PubMed] [Google Scholar]
- Förstermann U. Properties and mechanisms of production and action of endothelium-derived relaxing factor. J Cardiovasc Pharmacol. 1986;8 (Suppl 10):S45–S51. doi: 10.1097/00005344-198600101-00010. [DOI] [PubMed] [Google Scholar]
- Giovannetti S., Balestri P. L., Barsotti G. Methylguanidine in uremia. Arch Intern Med. 1973 May;131(5):709–713. [PubMed] [Google Scholar]
- Giovannetti S., Biagini M., Balestri P. L., Navalesi R., Giagnoni P., De Matteis A., Ferro-Milone P., Perfetti C. Uraemia-like syndrome in dogs chronically intoxicated with methylguanidine and creatinine. Clin Sci. 1969 Jun;36(3):445–452. [PubMed] [Google Scholar]
- Giovannetti S., Cioni L., Balestri P. L., Biagnini M. Evidence that guanidines and some related compounds cause haemolysis in chronic uraemia. Clin Sci. 1968 Feb;34(1):141–148. [PubMed] [Google Scholar]
- Iyengar R., Stuehr D. J., Marletta M. A. Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6369–6373. doi: 10.1073/pnas.84.18.6369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kikuchi T., Orita Y., Ando A., Mikami H., Fujii M., Okada A., Abe H. Liquid-chromatographic determination of guanidino compounds in plasma and erythrocyte of normal persons and uremic patients. Clin Chem. 1981 Nov;27(11):1899–1902. [PubMed] [Google Scholar]
- Linder L., Kiowski W., Bühler F. R., Lüscher T. F. Indirect evidence for release of endothelium-derived relaxing factor in human forearm circulation in vivo. Blunted response in essential hypertension. Circulation. 1990 Jun;81(6):1762–1767. doi: 10.1161/01.cir.81.6.1762. [DOI] [PubMed] [Google Scholar]
- Lowrie E. G., Laird N. M., Parker T. F., Sargent J. A. Effect of the hemodialysis prescription of patient morbidity: report from the National Cooperative Dialysis Study. N Engl J Med. 1981 Nov 12;305(20):1176–1181. doi: 10.1056/NEJM198111123052003. [DOI] [PubMed] [Google Scholar]
- Menichini G. C., Gonella M., Barsotti G., Giovannetti S. Determination of methylguanidine in serum and urine from normal and uremic subjects. Experientia. 1971 Oct 15;27(10):1157–1158. doi: 10.1007/BF02286896. [DOI] [PubMed] [Google Scholar]
- Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
- Natelson S., Sherwin J. E. Proposed mechanism for urea nitrogen re-utilization: relationship between urea and proposed guanidine cycles. Clin Chem. 1979 Jul;25(7):1343–1344. [PubMed] [Google Scholar]
- Orita Y., Ando A., Tsubakihara Y., Mikami H., Kikuchi T., Nakata K., Abe H. Tissue and blood cell concentration of methylguanidine in rats and patients with chronic renal failure. Nephron. 1981;27(1):35–39. doi: 10.1159/000182017. [DOI] [PubMed] [Google Scholar]
- Orita Y., Tsubakihara Y., Ando A., Nakata K., Takamitsu Y., Fukuhara Y., Abe H. Effect of arginine or creatinine administration on the urinary excretion of methylguanidine. Nephron. 1978;22(4-6):328–336. doi: 10.1159/000181471. [DOI] [PubMed] [Google Scholar]
- Palmer R. M., Rees D. D., Ashton D. S., Moncada S. L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun. 1988 Jun 30;153(3):1251–1256. doi: 10.1016/s0006-291x(88)81362-7. [DOI] [PubMed] [Google Scholar]
- Panza J. A., Quyyumi A. A., Brush J. E., Jr, Epstein S. E. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med. 1990 Jul 5;323(1):22–27. doi: 10.1056/NEJM199007053230105. [DOI] [PubMed] [Google Scholar]
- Rees D. D., Palmer R. M., Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A. 1989 May;86(9):3375–3378. doi: 10.1073/pnas.86.9.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rees D. D., Palmer R. M., Schulz R., Hodson H. F., Moncada S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol. 1990 Nov;101(3):746–752. doi: 10.1111/j.1476-5381.1990.tb14151.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt H. H., Klein M. M., Niroomand F., Böhme E. Is arginine a physiological precursor of endothelium-derived nitric oxide? Eur J Pharmacol. 1988 Mar 29;148(2):293–295. doi: 10.1016/0014-2999(88)90578-x. [DOI] [PubMed] [Google Scholar]
- Sorrentino R., Sorrentino L., Pinto A. Effect of some products of protein catabolism on the endothelium-dependent and -independent relaxation of rabbit thoracic aorta rings. J Pharmacol Exp Ther. 1993 Aug;266(2):626–633. [PubMed] [Google Scholar]
- Stein I. M., Perez G., Johnson R., Cummings N. B. Serum levels and urinary excretion of methylguanidine in chronic renal failure. J Lab Clin Med. 1971 Jun;77(6):1020–1024. [PubMed] [Google Scholar]
- Vallance P., Leone A., Calver A., Collier J., Moncada S. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet. 1992 Mar 7;339(8793):572–575. doi: 10.1016/0140-6736(92)90865-z. [DOI] [PubMed] [Google Scholar]
- Yokozawa T., Fujitsuka N., Oura H. Production of methylguanidine from creatinine in normal rats and rats with renal failure. Nephron. 1990;56(3):249–254. doi: 10.1159/000186149. [DOI] [PubMed] [Google Scholar]
- Yokozawa T., Fujitsuka N., Oura H. Studies on the precursor of methylguanidine in rats with renal failure. Nephron. 1991;58(1):90–94. doi: 10.1159/000186384. [DOI] [PubMed] [Google Scholar]
- Yokozawa T., Fujitsuka N., Oura H. Variations in the distribution of methylguanidine with the progression of renal failure after methylguanidine loading. Nephron. 1989;52(4):347–351. doi: 10.1159/000185675. [DOI] [PubMed] [Google Scholar]
