Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Jun;115(3):503–509. doi: 10.1111/j.1476-5381.1995.tb16362.x

The use of microdialysis for the study of drug kinetics: some methodological considerations illustrated with antipyrine in rat frontal cortex.

P N Patsalos 1, W T Abed 1, M S Alavijeh 1, M T O'Connell 1
PMCID: PMC1908406  PMID: 7582464

Abstract

1. The neuropharmacokinetics of antipyrine, a readily dialysable drug, in rat frontal cortex were studied and the effect of sampling time and contribution of period sampling and dialysate dead volume investigated in relation to tmax, Cmax, AUC and t1/2 values. 2. After i.p. administration, antipyrine (35 mg kg-1, n = 5) concentrations rose rapidly in rat frontal cortex (tmax, 12 min) and then declined exponentially tmax, Cmax, AUC and t1/2 values were determined after 2 min dialysate sampling and compared to values obtained from simulated sampling times of 4, 6, 8, 10 and 20 min. 3. Antipyrine tmax and Cmax values were directly dependent on sampling frequency. Thus, mean 2 min sampling tmax and Cmax values were 63% lower and 27% higher, respectively, compared to 20 min sampling values. AUC and t1/2 values were unaffected. 4. Adjustment for dialysate dead volume (the volume of dialysate within the dialysis probe and sampling tube) reduced tmax values significantly but did not affect the other neuropharmacokinetic parameters. 5. Contribution of period sampling on neuropharmacokinetic parameters were investigated by comparing plots of antipyrine concentration data at midpoint and at endpoint of sampling time interval. Only tmax values were affected with values decreasing with increasing sampling time interval. 6. In conclusion, although microdialysis is a useful method for monitoring events at the extracellular level and for kinetic studies, it is important to understand its inherent characteristics so that data can be interpreted appropriately. Sampling frequency, particularly during monitoring of periods of rapid change, is very important since Cmax and tmax values will be significantly underestimated and overestimated respectively, if sampling time is longer rather than shorter.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
503

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abercrombie E. D., Keller R. W., Jr, Zigmond M. J. Characterization of hippocampal norepinephrine release as measured by microdialysis perfusion: pharmacological and behavioral studies. Neuroscience. 1988 Dec;27(3):897–904. doi: 10.1016/0306-4522(88)90192-3. [DOI] [PubMed] [Google Scholar]
  2. Anderson J. J., DiMicco J. A. The use of microdialysis for studying the regional effects of pharmacological manipulation on extracellular levels of amino acids--some methodological aspects. Life Sci. 1992;51(8):623–630. doi: 10.1016/0024-3205(92)90232-e. [DOI] [PubMed] [Google Scholar]
  3. Ben-Zvi Z., Hreash F., Kaplanski J. Disposition of hexobarbitone and antipyrine in DOCA-hypertensive rats. J Pharm Pharmacol. 1991 May;43(5):349–352. doi: 10.1111/j.2042-7158.1991.tb06702.x. [DOI] [PubMed] [Google Scholar]
  4. Benveniste H., Hansen A. J., Ottosen N. S. Determination of brain interstitial concentrations by microdialysis. J Neurochem. 1989 Jun;52(6):1741–1750. doi: 10.1111/j.1471-4159.1989.tb07252.x. [DOI] [PubMed] [Google Scholar]
  5. Bolinder J., Ungerstedt U., Arner P. Long-term continuous glucose monitoring with microdialysis in ambulatory insulin-dependent diabetic patients. Lancet. 1993 Oct 30;342(8879):1080–1085. doi: 10.1016/0140-6736(93)92063-y. [DOI] [PubMed] [Google Scholar]
  6. Bustos G., Abarca J., Forray M. I., Gysling K., Bradberry C. W., Roth R. H. Regulation of excitatory amino acid release by N-methyl-D-aspartate receptors in rat striatum: in vivo microdialysis studies. Brain Res. 1992 Jul 10;585(1-2):105–115. doi: 10.1016/0006-8993(92)91195-k. [DOI] [PubMed] [Google Scholar]
  7. Carlson H., Ronne-Engström E., Ungerstedt U., Hillered L. Seizure related elevations of extracellular amino acids in human focal epilepsy. Neurosci Lett. 1992 Jun 8;140(1):30–32. doi: 10.1016/0304-3940(92)90674-v. [DOI] [PubMed] [Google Scholar]
  8. Chen Z., Steger R. W. Plasma microdialysis. A technique for continuous plasma sampling in freely moving rats. J Pharmacol Toxicol Methods. 1993 Apr;29(2):111–118. doi: 10.1016/1056-8719(93)90059-n. [DOI] [PubMed] [Google Scholar]
  9. Deleu D., Sarre S., Michotte Y., Ebinger G. Simultaneous in vivo microdialysis in plasma and skeletal muscle: a study of the pharmacokinetic properties of levodopa by noncompartmental analysis. J Pharm Sci. 1994 Jan;83(1):25–28. doi: 10.1002/jps.2600830107. [DOI] [PubMed] [Google Scholar]
  10. Delgado J. M., Lerma J., Martín del Río R., Solís J. M. Dialytrode technology and local profiles of amino acids in the awake cat brain. J Neurochem. 1984 May;42(5):1218–1228. doi: 10.1111/j.1471-4159.1984.tb02775.x. [DOI] [PubMed] [Google Scholar]
  11. During M. J., Spencer D. D. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet. 1993 Jun 26;341(8861):1607–1610. doi: 10.1016/0140-6736(93)90754-5. [DOI] [PubMed] [Google Scholar]
  12. Dykstra K. H., Arya A., Arriola D. M., Bungay P. M., Morrison P. F., Dedrick R. L. Microdialysis study of zidovudine (AZT) transport in rat brain. J Pharmacol Exp Ther. 1993 Dec;267(3):1227–1236. [PubMed] [Google Scholar]
  13. Golden P. L., Brouwer K. R., Pollack G. M. Assessment of valproic acid serum-cerebrospinal fluid transport by microdialysis. Pharm Res. 1993 Dec;10(12):1765–1771. doi: 10.1023/a:1018982300285. [DOI] [PubMed] [Google Scholar]
  14. Gumbleton M., Benet L. Z. Drug metabolism and laboratory anesthetic protocols in the rat: examination of antipyrine pharmacokinetics. Pharm Res. 1991 Apr;8(4):544–546. doi: 10.1023/a:1015827917684. [DOI] [PubMed] [Google Scholar]
  15. Hernandez L., Guzman N. A., Hoebel B. G. Bidirectional microdialysis in vivo shows differential dopaminergic potency of cocaine, procaine and lidocaine in the nucleus accumbens using capillary electrophoresis for calibration of drug outward diffusion. Psychopharmacology (Berl) 1991;105(2):264–268. doi: 10.1007/BF02244320. [DOI] [PubMed] [Google Scholar]
  16. Hurd Y. L., Kehr J., Ungerstedt U. In vivo microdialysis as a technique to monitor drug transport: correlation of extracellular cocaine levels and dopamine overflow in the rat brain. J Neurochem. 1988 Oct;51(4):1314–1316. doi: 10.1111/j.1471-4159.1988.tb03103.x. [DOI] [PubMed] [Google Scholar]
  17. Hutson P. H., Curzon G. Concurrent determination of effects of p-chloroamphetamine on central extracellular 5-hydroxytryptamine concentration and behaviour. Br J Pharmacol. 1989 Apr;96(4):801–806. doi: 10.1111/j.1476-5381.1989.tb11887.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Johanson C. E., Woodbury D. M. Penetration of 14C-antipyrine and 14C-barbital into the choroid plexus and cerebrospinal fluid of the rat in vivo. Exp Brain Res. 1977 Oct 24;30(1):65–74. doi: 10.1007/BF00237859. [DOI] [PubMed] [Google Scholar]
  19. Justice J. B., Jr Quantitative microdialysis of neurotransmitters. J Neurosci Methods. 1993 Jul;48(3):263–276. doi: 10.1016/0165-0270(93)90097-b. [DOI] [PubMed] [Google Scholar]
  20. Kurata N., Inagaki M., Kobayashi S., Nishimura Y., Oguchi K., Yasuhara H. Antipyrine concentrations in liver and blood monitored by microdialysis of unrestrained conscious rats. Res Commun Chem Pathol Pharmacol. 1993 Mar;79(3):363–369. [PubMed] [Google Scholar]
  21. Lehmann A., Isacsson H., Hamberger A. Effects of in vivo administration of kainic acid on the extracellular amino acid pool in the rabbit hippocampus. J Neurochem. 1983 May;40(5):1314–1320. doi: 10.1111/j.1471-4159.1983.tb13572.x. [DOI] [PubMed] [Google Scholar]
  22. Ludvig N., Mishra P. K., Yan Q. S., Lasley S. M., Burger R. L., Jobe P. C. The combined EEG-intracerebral microdialysis technique: a new tool for neuropharmacological studies on freely behaving animals. J Neurosci Methods. 1992 Jul;43(2-3):129–137. doi: 10.1016/0165-0270(92)90022-6. [DOI] [PubMed] [Google Scholar]
  23. Menacherry S., Hubert W., Justice J. B., Jr In vivo calibration of microdialysis probes for exogenous compounds. Anal Chem. 1992 Mar 15;64(6):577–583. doi: 10.1021/ac00030a003. [DOI] [PubMed] [Google Scholar]
  24. Meyerson B. A., Linderoth B., Karlsson H., Ungerstedt U. Microdialysis in the human brain: extracellular measurements in the thalamus of parkinsonian patients. Life Sci. 1990;46(4):301–308. doi: 10.1016/0024-3205(90)90037-r. [DOI] [PubMed] [Google Scholar]
  25. Millan M. H., Chapman A. G., Meldrum B. S. Extracellular amino acid levels in hippocampus during pilocarpine-induced seizures. Epilepsy Res. 1993 Feb;14(2):139–148. doi: 10.1016/0920-1211(93)90018-3. [DOI] [PubMed] [Google Scholar]
  26. Mizuno T., Endo Y., Arita J., Kimura F. Acetylcholine release in the rat hippocampus as measured by the microdialysis method correlates with motor activity and exhibits a diurnal variation. Neuroscience. 1991;44(3):607–612. doi: 10.1016/0306-4522(91)90081-x. [DOI] [PubMed] [Google Scholar]
  27. Morrison P. F., Bungay P. M., Hsiao J. K., Ball B. A., Mefford I. N., Dedrick R. L. Quantitative microdialysis: analysis of transients and application to pharmacokinetics in brain. J Neurochem. 1991 Jul;57(1):103–119. doi: 10.1111/j.1471-4159.1991.tb02105.x. [DOI] [PubMed] [Google Scholar]
  28. O'Connell M. T., Portas C. M., Sarna G. S., Curzon G. Effect of p-chlorophenylalanine on release of 5-hydroxytryptamine from the rat frontal cortex in vivo. Br J Pharmacol. 1991 Apr;102(4):831–836. doi: 10.1111/j.1476-5381.1991.tb12261.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Patsalos P. N., Duncan J. S., Shorvon S. D. Effect of the removal of individual antiepileptic drugs on antipyrine kinetics, in patients taking polytherapy. Br J Clin Pharmacol. 1988 Sep;26(3):253–259. doi: 10.1111/j.1365-2125.1988.tb05274.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pei Y. Y., Bialer M., Levy R. H. Effects of phenobarbital steady state levels on antipyrine clearance and distribution in the rat. Biopharm Drug Dispos. 1986 Jan-Feb;7(1):11–19. doi: 10.1002/bdd.2510070103. [DOI] [PubMed] [Google Scholar]
  31. Persson L., Hillered L. Chemical monitoring of neurosurgical intensive care patients using intracerebral microdialysis. J Neurosurg. 1992 Jan;76(1):72–80. doi: 10.3171/jns.1992.76.1.0072. [DOI] [PubMed] [Google Scholar]
  32. RALL D. P., STABENAU J. R., ZUBROD C. G. Distribution of drugs between blood and cerebrospinal fluid: general methodology and effect of pH gradients. J Pharmacol Exp Ther. 1959 Mar;125(3):185–193. [PubMed] [Google Scholar]
  33. Rane A., Wilkinson G. R., Shand D. G. Prediction of hepatic extraction ratio from in vitro measurement of intrinsic clearance. J Pharmacol Exp Ther. 1977 Feb;200(2):420–424. [PubMed] [Google Scholar]
  34. Sabol K. E., Freed C. R. Brain acetaminophen measurement by in vivo dialysis, in vivo electrochemistry and tissue assay: a study of the dialysis technique in the rat. J Neurosci Methods. 1988 Jun;24(2):163–168. doi: 10.1016/0165-0270(88)90060-x. [DOI] [PubMed] [Google Scholar]
  35. Scheller D., Kolb J. The internal reference technique in microdialysis: a practical approach to monitoring dialysis efficiency and to calculating tissue concentration from dialysate samples. J Neurosci Methods. 1991 Nov;40(1):31–38. doi: 10.1016/0165-0270(91)90114-f. [DOI] [PubMed] [Google Scholar]
  36. Scheyer R. D., During M. J., Hochholzer J. M., Spencer D. D., Cramer J. A., Mattson R. H. Phenytoin concentrations in the human brain: an in vivo microdialysis study. Epilepsy Res. 1994 Jul;18(3):227–232. doi: 10.1016/0920-1211(94)90043-4. [DOI] [PubMed] [Google Scholar]
  37. Scheyer R. D., During M. J., Spencer D. D., Cramer J. A., Mattson R. H. Measurement of carbamazepine and carbamazepine epoxide in the human brain using in vivo microdialysis. Neurology. 1994 Aug;44(8):1469–1472. doi: 10.1212/wnl.44.8.1469. [DOI] [PubMed] [Google Scholar]
  38. Semba J., Doheny M., Patsalos P. N., Sarna G., Curzon G. Effect of milacemide on extracellular and tissue concentrations of dopamine and 5-hydroxytryptamine in rat frontal cortex. Br J Pharmacol. 1992 Jan;105(1):59–62. doi: 10.1111/j.1476-5381.1992.tb14210.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Shaw P. N., Tseti J., Warburton S., Adedoyin A., Houston J. B. Inhibition of antipyrine metabolite formation. Steady state studies with cimetidine and metyrapone in rats. Drug Metab Dispos. 1986 Mar-Apr;14(2):271–276. [PubMed] [Google Scholar]
  40. Sjöberg P., Olofsson I. M., Lundqvist T. Validation of different microdialysis methods for the determination of unbound steady-state concentrations of theophylline in blood and brain tissue. Pharm Res. 1992 Dec;9(12):1592–1598. doi: 10.1023/a:1015816509140. [DOI] [PubMed] [Google Scholar]
  41. Stenken J. A., Topp E. M., Southard M. Z., Lunte C. E. Examination of microdialysis sampling in a well-characterized hydrodynamic system. Anal Chem. 1993 Sep 1;65(17):2324–2328. doi: 10.1021/ac00065a026. [DOI] [PubMed] [Google Scholar]
  42. Ståhle L., Arner P., Ungerstedt U. Drug distribution studies with microdialysis. III: Extracellular concentration of caffeine in adipose tissue in man. Life Sci. 1991;49(24):1853–1858. doi: 10.1016/0024-3205(91)90488-w. [DOI] [PubMed] [Google Scholar]
  43. Ståhle L. Microdialysis in pharmacokinetics. Eur J Drug Metab Pharmacokinet. 1993 Jan-Mar;18(1):89–96. doi: 10.1007/BF03220011. [DOI] [PubMed] [Google Scholar]
  44. Ståhle L., Segersvärd S., Ungerstedt U. Drug distribution studies with microdialysis. II. Caffeine and theophylline in blood, brain and other tissues in rats. Life Sci. 1991;49(24):1843–1852. doi: 10.1016/0024-3205(91)90487-v. [DOI] [PubMed] [Google Scholar]
  45. Ståhle L., Segersvärd S., Ungerstedt U. Theophylline concentration in the extracellular space of the rat brain: measurement by microdialysis and relation to behaviour. Eur J Pharmacol. 1990 Aug 28;185(2-3):187–193. doi: 10.1016/0014-2999(90)90639-n. [DOI] [PubMed] [Google Scholar]
  46. Svensson C. K., Liu L. L. Dose- and time-dependent effect of levamisole on the elimination of antipyrine in the rat. Drug Metab Dispos. 1987 May-Jun;15(3):432–434. [PubMed] [Google Scholar]
  47. Tanaka E., Kobayashi S., Uchida E., Oguchi K., Yasuhara H. Antipyrine metabolism in female Lewis and Dark Agouti strains of rats, which are extensive and poor metabolizers of debrisoquine, respectively. Jpn J Pharmacol. 1989 Mar;49(3):433–435. doi: 10.1254/jjp.49.433. [DOI] [PubMed] [Google Scholar]
  48. Telting-Diaz M., Scott D. O., Lunte C. E. Intravenous microdialysis sampling in awake, freely-moving rats. Anal Chem. 1992 Apr 1;64(7):806–810. doi: 10.1021/ac00031a019. [DOI] [PubMed] [Google Scholar]
  49. Vezzani A., Ungerstedt U., French E. D., Schwarcz R. In vivo brain dialysis of amino acids and simultaneous EEG measurements following intrahippocampal quinolinic acid injection: evidence for a dissociation between neurochemical changes and seizures. J Neurochem. 1985 Aug;45(2):335–344. doi: 10.1111/j.1471-4159.1985.tb03993.x. [DOI] [PubMed] [Google Scholar]
  50. Yadid G., Pacak K., Golomb E., Harvey-White J. D., Lieberman D. M., Kopin I. J., Goldstein D. S. Glycine stimulates striatal dopamine release in conscious rats. Br J Pharmacol. 1993 Sep;110(1):50–53. doi: 10.1111/j.1476-5381.1993.tb13770.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Yamamoto B. K., Davy S. Dopaminergic modulation of glutamate release in striatum as measured by microdialysis. J Neurochem. 1992 May;58(5):1736–1742. doi: 10.1111/j.1471-4159.1992.tb10048.x. [DOI] [PubMed] [Google Scholar]
  52. Yokel R. A., Allen D. D., Burgio D. E., McNamara P. J. Antipyrine as a dialyzable reference to correct differences in efficiency among and within sampling devices during in vivo microdialysis. J Pharmacol Toxicol Methods. 1992 May;27(3):135–142. doi: 10.1016/1056-8719(92)90034-x. [DOI] [PubMed] [Google Scholar]
  53. van Bezooijen C. F., van Oorschot R. M. The effect of age on antipyrine pharmacokinetics and metabolite formation in rats. J Pharmacol Exp Ther. 1989 Nov;251(2):683–686. [PubMed] [Google Scholar]
  54. van Bree J. B., Baljet A. V., van Geyt A., de Boer A. G., Danhof M., Breimer D. D. The unit impulse response procedure for the pharmacokinetic evaluation of drug entry into the central nervous system. J Pharmacokinet Biopharm. 1989 Aug;17(4):441–462. doi: 10.1007/BF01061457. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES