Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Jun;115(3):479–485. doi: 10.1111/j.1476-5381.1995.tb16358.x

Long-lasting activation of cation current by low concentration of endothelin-1 in mouse fibroblasts and smooth muscle cells of rabbit aorta.

T Enoki 1, S Miwa 1, A Sakamoto 1, T Minowa 1, T Komuro 1, S Kobayashi 1, H Ninomiya 1, T Masaki 1
PMCID: PMC1908407  PMID: 7582460

Abstract

1. Recombinant human ETA receptors were expressed in a mouse fibroblast cell line (Ltk- cell) and functional coupling of the receptors with Ca2+ permeable channels at low concentrations of endothelin-1 (ET-1) was investigated using whole-cell recordings and monitoring the changes in intracellular free Ca2+ concentrations ([Ca2+]i) with a Ca2+ indicator, fluo-3. A similar type of coupling was investigated in freshly dispersed vascular smooth muscle cells (VSMCs) of rabbit thoracic aorta by use of whole-cell recordings. 2. In Ltk- cells expressing recombinant human ETA receptors, concentrations of ET-1 (10(-8) M, 10(-9) M) evoked an initial transient peak and a subsequent sustained elevation in [Ca2+]i whereas a lower concentration of ET-1 (10(-10) M) evoked only a sustained elevation of [Ca2+]i. After removal of extracellular Ca2+, ET-1 evoked only an initial peak without a sustained elevation of [Ca2+]i. The sustained elevation induced by 10(-10) M ET-1 was blocked by 300 microM mefenamic acid (a cation channel blocker) but not by 10 microM nifedipine (a blocker of voltage-operated Ca2+ channel). 3. In whole-cell recordings with Ltk- cells, a brief (3-5 min) application of ET-1 (10(-10) M) induced a sustained inward current at a holding potential of -60 mV. The current-voltage relationship revealed that the reversal potential of the ET-1-induced current was close to 0 mV (1.9 mV) and was not altered by reducing the concentration of Cl- in the bath solution, indicating that the current is carried by cations.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
479

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amédée T., Benham C. D., Bolton T. B., Byrne N. G., Large W. A. Potassium, chloride and non-selective cation conductances opened by noradrenaline in rabbit ear artery cells. J Physiol. 1990 Apr;423:551–568. doi: 10.1113/jphysiol.1990.sp018039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Byrne N. G., Large W. A. Membrane ionic mechanisms activated by noradrenaline in cells isolated from the rabbit portal vein. J Physiol. 1988 Oct;404:557–573. doi: 10.1113/jphysiol.1988.sp017306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chabrier P. E., Auguet M., Roubert P., Lonchampt M. O., Gillard V., Guillon J. M., Delaflotte S., Braquet P. Vascular mechanism of action of endothelin-1: effect of Ca2+ antagonists. J Cardiovasc Pharmacol. 1989;13 (Suppl 5):S32–S45. doi: 10.1097/00005344-198900135-00009. [DOI] [PubMed] [Google Scholar]
  4. Chen C., Wagoner P. K. Endothelin induces a nonselective cation current in vascular smooth muscle cells. Circ Res. 1991 Aug;69(2):447–454. doi: 10.1161/01.res.69.2.447. [DOI] [PubMed] [Google Scholar]
  5. Flower R. J., Vane J. R. Inhibition of prostaglandin biosynthesis. Biochem Pharmacol. 1974 May 15;23(10):1439–1450. doi: 10.1016/0006-2952(74)90381-5. [DOI] [PubMed] [Google Scholar]
  6. Frace A. M., Gargus J. J. Activation of single-channel currents in mouse fibroblasts by platelet-derived growth factor. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2511–2515. doi: 10.1073/pnas.86.7.2511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goto K., Kasuya Y., Matsuki N., Takuwa Y., Kurihara H., Ishikawa T., Kimura S., Yanagisawa M., Masaki T. Endothelin activates the dihydropyridine-sensitive, voltage-dependent Ca2+ channel in vascular smooth muscle. Proc Natl Acad Sci U S A. 1989 May;86(10):3915–3918. doi: 10.1073/pnas.86.10.3915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gögelein H., Dahlem D., Englert H. C., Lang H. J. Flufenamic acid, mefenamic acid and niflumic acid inhibit single nonselective cation channels in the rat exocrine pancreas. FEBS Lett. 1990 Jul 30;268(1):79–82. doi: 10.1016/0014-5793(90)80977-q. [DOI] [PubMed] [Google Scholar]
  9. Huang X. N., Hisayama T., Takayanagi I. Endothelin-1 induced contraction of rat aorta: contributions made by Ca2+ influx and activation of contractile apparatus associated with no change in cytoplasmic Ca2+ level. Naunyn Schmiedebergs Arch Pharmacol. 1990 Jan-Feb;341(1-2):80–87. doi: 10.1007/BF00195062. [DOI] [PubMed] [Google Scholar]
  10. Inoue R., Kuriyama H. Dual regulation of cation-selective channels by muscarinic and alpha 1-adrenergic receptors in the rabbit portal vein. J Physiol. 1993 Jun;465:427–448. doi: 10.1113/jphysiol.1993.sp019685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Inoue Y., Oike M., Nakao K., Kitamura K., Kuriyama H. Endothelin augments unitary calcium channel currents on the smooth muscle cell membrane of guinea-pig portal vein. J Physiol. 1990 Apr;423:171–191. doi: 10.1113/jphysiol.1990.sp018017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jung F., Selvaraj S., Gargus J. J. Blockers of platelet-derived growth factor-activated nonselective cation channel inhibit cell proliferation. Am J Physiol. 1992 Jun;262(6 Pt 1):C1464–C1470. doi: 10.1152/ajpcell.1992.262.6.C1464. [DOI] [PubMed] [Google Scholar]
  13. Kasuya Y., Ishikawa T., Yanagisawa M., Kimura S., Goto K., Masaki T. Mechanism of contraction to endothelin in isolated porcine coronary artery. Am J Physiol. 1989 Dec;257(6 Pt 2):H1828–H1835. doi: 10.1152/ajpheart.1989.257.6.H1828. [DOI] [PubMed] [Google Scholar]
  14. Kasuya Y., Takuwa Y., Yanagisawa M., Kimura S., Goto K., Masaki T. Endothelin-1 induces vasoconstriction through two functionally distinct pathways in porcine coronary artery: contribution of phosphoinositide turnover. Biochem Biophys Res Commun. 1989 Jun 30;161(3):1049–1055. doi: 10.1016/0006-291x(89)91349-1. [DOI] [PubMed] [Google Scholar]
  15. Klöckner U., Isenberg G. Endothelin depolarizes myocytes from porcine coronary and human mesenteric arteries through a Ca-activated chloride current. Pflugers Arch. 1991 Mar;418(1-2):168–175. doi: 10.1007/BF00370467. [DOI] [PubMed] [Google Scholar]
  16. Kobayashi S., Takahashi T. Whole-cell properties of temperature-sensitive neurons in rat hypothalamic slices. Proc Biol Sci. 1993 Feb 22;251(1331):89–94. doi: 10.1098/rspb.1993.0013. [DOI] [PubMed] [Google Scholar]
  17. Lewis C. A. Ion-concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. J Physiol. 1979 Jan;286:417–445. doi: 10.1113/jphysiol.1979.sp012629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Masaki T. Endothelin in vascular biology. Ann N Y Acad Sci. 1994 Apr 18;714:101–108. doi: 10.1111/j.1749-6632.1994.tb12034.x. [DOI] [PubMed] [Google Scholar]
  19. Minta A., Kao J. P., Tsien R. Y. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem. 1989 May 15;264(14):8171–8178. [PubMed] [Google Scholar]
  20. Neher E. The influence of intracellular calcium concentration on degranulation of dialysed mast cells from rat peritoneum. J Physiol. 1988 Jan;395:193–214. doi: 10.1113/jphysiol.1988.sp016914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Perez-Reyes E., Kim H. S., Lacerda A. E., Horne W., Wei X. Y., Rampe D., Campbell K. P., Brown A. M., Birnbaumer L. Induction of calcium currents by the expression of the alpha 1-subunit of the dihydropyridine receptor from skeletal muscle. Nature. 1989 Jul 20;340(6230):233–236. doi: 10.1038/340233a0. [DOI] [PubMed] [Google Scholar]
  22. Rubanyi G. M., Polokoff M. A. Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev. 1994 Sep;46(3):325–415. [PubMed] [Google Scholar]
  23. Sakamoto A., Yanagisawa M., Sawamura T., Enoki T., Ohtani T., Sakurai T., Nakao K., Toyo-oka T., Masaki T. Distinct subdomains of human endothelin receptors determine their selectivity to endothelinA-selective antagonist and endothelinB-selective agonists. J Biol Chem. 1993 Apr 25;268(12):8547–8553. [PubMed] [Google Scholar]
  24. Simpson A. W., Stampfl A., Ashley C. C. Evidence for receptor-mediated bivalent-cation entry in A10 vascular smooth-muscle cells. Biochem J. 1990 Apr 1;267(1):277–280. doi: 10.1042/bj2670277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Van Renterghem C., Vigne P., Barhanin J., Schmid-Alliana A., Frelin C., Lazdunski M. Molecular mechanism of action of the vasoconstrictor peptide endothelin. Biochem Biophys Res Commun. 1988 Dec 30;157(3):977–985. doi: 10.1016/s0006-291x(88)80970-7. [DOI] [PubMed] [Google Scholar]
  26. Wang Q., Hogg R. C., Large W. A. A monovalent ion-selective cation current activated by noradrenaline in smooth muscle cells of rabbit ear artery. Pflugers Arch. 1993 Apr;423(1-2):28–33. doi: 10.1007/BF00374957. [DOI] [PubMed] [Google Scholar]
  27. Wang Q., Large W. A. Noradrenaline-evoked cation conductance recorded with the nystatin whole-cell method in rabbit portal vein cells. J Physiol. 1991 Apr;435:21–39. doi: 10.1113/jphysiol.1991.sp018496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]
  29. van Heeswijk M. P., Geertsen J. A., van Os C. H. Kinetic properties of the ATP-dependent Ca2+ pump and the Na+/Ca2+ exchange system in basolateral membranes from rat kidney cortex. J Membr Biol. 1984;79(1):19–31. doi: 10.1007/BF01868523. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES