Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Jun;115(3):522–526. doi: 10.1111/j.1476-5381.1995.tb16365.x

All-or-none augmentation of Ca2+ sensitivity in alpha-toxin-permeabilized single smooth muscle cells from guinea-pig taenia caecum.

M Mita 1, T Hashimoto 1
PMCID: PMC1908411  PMID: 7582467

Abstract

1. Isolated smooth muscle cells from guinea-pig taenia caecum were permeabilized by use of Staphylococcus aureus alpha-toxin, and the sarcoplasmic reticulum Ca2+ store was depleted by exposure to 0.1 microM A23187. 2. Shortening of alpha-toxin-permeabilized single smooth muscle cells was induced by increasing free Ca2+ but was not induced by 0.2 microM free Ca2+. 3. Shortening of the permeabilized cells was caused by application of acetylcholine (ACh) with free Ca2+ concentration held at 0.2 microM. Permeabilized smooth muscle cells responded to 0.3 microM or 1 microM ACh with 0.2 microM Ca2+ with maximal shortening. The concentration-response relationship to ACh had a very steep slope and the cell shortening appeared to be an all-or-none response rather than a graded response, as was the shortening of intact cells to ACh. 4. The shortening of permeabilized cells was also induced by application of guanosine 5'-triphosphate (GTP) with 0.2 microM free Ca2+, showing an all-or-none response. The threshold concentration of GTP that induced an all-or-none response was between 10 microM and 30 microM. 5. These results suggest that Ca2+ sensitivity is augmented by stimulation of the muscarinic receptor or GTP-binding protein(s) in an all-or-none manner. It seems probable that this contributes to the all-or-none response to ACh in intact smooth muscle cells.

Full text

PDF
522

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahnert-Hilger G., Gratzl M. Controlled manipulation of the cell interior by pore-forming proteins. Trends Pharmacol Sci. 1988 Jun;9(6):195–197. doi: 10.1016/0165-6147(88)90081-8. [DOI] [PubMed] [Google Scholar]
  2. Bhakdi S., Tranum-Jensen J. Alpha-toxin of Staphylococcus aureus. Microbiol Rev. 1991 Dec;55(4):733–751. doi: 10.1128/mr.55.4.733-751.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradley A. B., Morgan K. G. Alterations in cytoplasmic calcium sensitivity during porcine coronary artery contractions as detected by aequorin. J Physiol. 1987 Apr;385:437–448. doi: 10.1113/jphysiol.1987.sp016500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gong M. C., Fuglsang A., Alessi D., Kobayashi S., Cohen P., Somlyo A. V., Somlyo A. P. Arachidonic acid inhibits myosin light chain phosphatase and sensitizes smooth muscle to calcium. J Biol Chem. 1992 Oct 25;267(30):21492–21498. [PubMed] [Google Scholar]
  5. Harafuji H., Ogawa Y. Re-examination of the apparent binding constant of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid with calcium around neutral pH. J Biochem. 1980 May;87(5):1305–1312. doi: 10.1093/oxfordjournals.jbchem.a132868. [DOI] [PubMed] [Google Scholar]
  6. Hirata K., Kikuchi A., Sasaki T., Kuroda S., Kaibuchi K., Matsuura Y., Seki H., Saida K., Takai Y. Involvement of rho p21 in the GTP-enhanced calcium ion sensitivity of smooth muscle contraction. J Biol Chem. 1992 May 5;267(13):8719–8722. [PubMed] [Google Scholar]
  7. Iino M. Calcium dependent inositol trisphosphate-induced calcium release in the guinea-pig taenia caeci. Biochem Biophys Res Commun. 1987 Jan 15;142(1):47–52. doi: 10.1016/0006-291x(87)90449-9. [DOI] [PubMed] [Google Scholar]
  8. Inoue R., Isenberg G. Intracellular calcium ions modulate acetylcholine-induced inward current in guinea-pig ileum. J Physiol. 1990 May;424:73–92. doi: 10.1113/jphysiol.1990.sp018056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Itoh T., Kanmura Y., Kuriyama H. A23187 increases calcium permeability of store sites more than of surface membranes in the rabbit mesenteric artery. J Physiol. 1985 Feb;359:467–484. doi: 10.1113/jphysiol.1985.sp015597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Karaki H. Ca2+ localization and sensitivity in vascular smooth muscle. Trends Pharmacol Sci. 1989 Aug;10(8):320–325. doi: 10.1016/0165-6147(89)90066-7. [DOI] [PubMed] [Google Scholar]
  11. Karaki H., Sato K., Ozaki H. Different effects of norepinephrine and KCl on the cytosolic Ca2+-tension relationship in vascular smooth muscle of rat aorta. Eur J Pharmacol. 1988 Jul 7;151(2):325–328. doi: 10.1016/0014-2999(88)90817-5. [DOI] [PubMed] [Google Scholar]
  12. Kitazawa T., Gaylinn B. D., Denney G. H., Somlyo A. P. G-protein-mediated Ca2+ sensitization of smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem. 1991 Jan 25;266(3):1708–1715. [PubMed] [Google Scholar]
  13. Kitazawa T., Kobayashi S., Horiuti K., Somlyo A. V., Somlyo A. P. Receptor-coupled, permeabilized smooth muscle. Role of the phosphatidylinositol cascade, G-proteins, and modulation of the contractile response to Ca2+. J Biol Chem. 1989 Apr 5;264(10):5339–5342. [PubMed] [Google Scholar]
  14. Kubota Y., Nomura M., Kamm K. E., Mumby M. C., Stull J. T. GTP gamma S-dependent regulation of smooth muscle contractile elements. Am J Physiol. 1992 Feb;262(2 Pt 1):C405–C410. doi: 10.1152/ajpcell.1992.262.2.C405. [DOI] [PubMed] [Google Scholar]
  15. Mita M., Matsuo N., Uchida M. K. Effect of Ca2+ deprivation on short-term desensitization of isolated smooth muscle cells showing an all-or-none response to acetylcholine. Gen Pharmacol. 1988;19(3):441–445. doi: 10.1016/0306-3623(88)90044-4. [DOI] [PubMed] [Google Scholar]
  16. Mita M., Ono T., Hashimoto T., Uchida M. K. All-or-none shortening of isolated single smooth muscle cells from different organs to acetylcholine. Gen Pharmacol. 1993 Sep;24(5):1085–1090. doi: 10.1016/0306-3623(93)90353-y. [DOI] [PubMed] [Google Scholar]
  17. Mita M., Uchida M. K. Desensitization of isolated smooth muscle cells from guinea pig taenia caecum to acetylcholine. Can J Physiol Pharmacol. 1987 Mar;65(3):293–297. doi: 10.1139/y87-051. [DOI] [PubMed] [Google Scholar]
  18. Mita M., Uchida M. K. Muscarinic receptor binding and Ca2+ influx in the all-or-none response to acetylcholine of isolated smooth muscle cells. Eur J Pharmacol. 1988 Jun 22;151(1):9–17. doi: 10.1016/0014-2999(88)90686-3. [DOI] [PubMed] [Google Scholar]
  19. Mita M., Uchida M. K. The change in the threshold for short-term desensitization in isolated smooth muscle cells showing an all-or-none response to acetylcholine. Br J Pharmacol. 1991 Nov;104(3):603–608. doi: 10.1111/j.1476-5381.1991.tb12476.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nishimura J., Kolber M., van Breemen C. Norepinephrine and GTP-gamma-S increase myofilament Ca2+ sensitivity in alpha-toxin permeabilized arterial smooth muscle. Biochem Biophys Res Commun. 1988 Dec 15;157(2):677–683. doi: 10.1016/s0006-291x(88)80303-6. [DOI] [PubMed] [Google Scholar]
  21. Oishi K., Mita M., Ono T., Hashimoto T., Uchida M. K. Protein kinase C-independent sensitization of contractile proteins to Ca2+ in alpha-toxin-permeabilized smooth muscle cells from the guinea-pig stomach. Br J Pharmacol. 1992 Dec;107(4):908–909. doi: 10.1111/j.1476-5381.1992.tb13383.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Oishi K., Takano-Ohmuro H., Minakawa-Matsuo N., Suga O., Karibe H., Kohama K., Uchida M. K. Oxytocin contracts rat uterine smooth muscle in Ca2(+)-free medium without any phosphorylation of myosin light chain. Biochem Biophys Res Commun. 1991 Apr 15;176(1):122–128. doi: 10.1016/0006-291x(91)90898-h. [DOI] [PubMed] [Google Scholar]
  23. Ono T., Mita M., Suga O., Hashimoto T., Oishi K., Uchida M. K. Receptor-coupled shortening of alpha-toxin-permeabilized single smooth muscle cells from the guinea-pig stomach. Br J Pharmacol. 1992 Jul;106(3):539–543. doi: 10.1111/j.1476-5381.1992.tb14371.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Satoh S., Rensland H., Pfitzer G. Ras proteins increase Ca(2+)-responsiveness of smooth muscle contraction. FEBS Lett. 1993 Jun 14;324(2):211–215. doi: 10.1016/0014-5793(93)81395-g. [DOI] [PubMed] [Google Scholar]
  25. Stull J. T., Hsu L. C., Tansey M. G., Kamm K. E. Myosin light chain kinase phosphorylation in tracheal smooth muscle. J Biol Chem. 1990 Sep 25;265(27):16683–16690. [PubMed] [Google Scholar]
  26. Tang D. C., Stull J. T., Kubota Y., Kamm K. E. Regulation of the Ca2+ dependence of smooth muscle contraction. J Biol Chem. 1992 Jun 15;267(17):11839–11845. [PubMed] [Google Scholar]
  27. Tansey M. G., Word R. A., Hidaka H., Singer H. A., Schworer C. M., Kamm K. E., Stull J. T. Phosphorylation of myosin light chain kinase by the multifunctional calmodulin-dependent protein kinase II in smooth muscle cells. J Biol Chem. 1992 Jun 25;267(18):12511–12516. [PubMed] [Google Scholar]
  28. Winder S. J., Walsh M. P. Calponin: thin filament-linked regulation of smooth muscle contraction. Cell Signal. 1993 Nov;5(6):677–686. doi: 10.1016/0898-6568(93)90029-l. [DOI] [PubMed] [Google Scholar]
  29. Yamazawa T., Iino M., Endo M. Presence of functionally different compartments of the Ca2+ store in single intestinal smooth muscle cells. FEBS Lett. 1992 Apr 20;301(2):181–184. doi: 10.1016/0014-5793(92)81243-f. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES