Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1992 Mar;105(3):720–726. doi: 10.1111/j.1476-5381.1992.tb09045.x

8-Hydroxy-2-(di-n-propylamino)tetralin impairs spatial learning in a water maze: role of postsynaptic 5-HT1A receptors.

M Carli 1, R Samanin 1
PMCID: PMC1908428  PMID: 1385752

Abstract

1. The effects of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a 5-HT1A receptor agonist, on place navigation was studied by use of two spatial tasks in a water maze. 2. In the first experiment, rats treated subcutaneously with 100 and 300 (but not 30) micrograms kg-1 8-OH-DPAT were impaired in their ability to locate a hidden platform. The probe test confirmed the impairment of spatial navigation but the effect (time spent in the training quadrant) was quantitatively different, depending on whether 8-OH-DPAT was administered only before each training session, only before the probe test or in both conditions. 3. In the second experiment, rats received 150 micrograms 5,7-dihydroxytryptamine (5,7-DHT) intracerebroventricularly to destroy 5-hydroxytryptamine (5-HT)-containing neurones and 24 days later were examined for choice accuracy in a two-platform spatial discrimination task. 4. At 100 (but not 30) micrograms kg-1 8-OH-DPAT impaired rats' accuracy with no effect on latency and no errors of omission. In 5,7-DHT-treated rats, this dose had a greater effect, including errors of omission. Sham-operated rats injected with 300 micrograms kg-1 8-OH-DPAT were markedly impaired in accuracy but they had longer latencies and made more errors than controls. All the effects were increased in 5,7-DHT treated rats. 5. The results suggest that, at doses causing no apparent changes in motor behaviour or motivation, 8-OH-DPAT impairs spatial navigation by stimulating postsynaptic 5-HT1A receptors in the rat brain.

Full text

PDF
720

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achilli G., Perego C., Ponzio F. Application of the dual-cell coulometric detector: a method for assaying monoamines and their metabolites. Anal Biochem. 1985 Jul;148(1):1–9. doi: 10.1016/0003-2697(85)90620-7. [DOI] [PubMed] [Google Scholar]
  2. Altman H. J., Normile H. J., Galloway M. P., Ramirez A., Azmitia E. C. Enhanced spatial discrimination learning in rats following 5,7-DHT-induced serotonergic deafferentation of the hippocampus. Brain Res. 1990 Jun 4;518(1-2):61–66. doi: 10.1016/0006-8993(90)90954-a. [DOI] [PubMed] [Google Scholar]
  3. Andrade R., Nicoll R. A. Novel anxiolytics discriminate between postsynaptic serotonin receptors mediating different physiological responses on single neurons of the rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol. 1987 Jul;336(1):5–10. doi: 10.1007/BF00177743. [DOI] [PubMed] [Google Scholar]
  4. Baumgarten H. G., Björklund A., Lachenmayer L., Nobin A. Evaluation of the effects of 5,7-dihydroxytryptamine on serotonin and catecholamine neurons in the rat CNS. Acta Physiol Scand Suppl. 1973;391:1–19. [PubMed] [Google Scholar]
  5. Bendotti C., Samanin R. 8-Hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) elicits eating in free-feeding rats by acting on central serotonin neurons. Eur J Pharmacol. 1986 Feb 11;121(1):147–150. doi: 10.1016/0014-2999(86)90405-x. [DOI] [PubMed] [Google Scholar]
  6. Breese G. R., Cooper B. R. Behavioral and biochemical interactions of 5,7-dihydroxytryptamine with various drugs when administered intracisternally to adult and developing rats. Brain Res. 1975 Nov 21;98(3):517–527. doi: 10.1016/0006-8993(75)90370-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carli M., Samanin R. Potential anxiolytic properties of 8-hydroxy-2-(di-n-propylamino)tetralin, a selective serotonin 1A receptor agonist. Psychopharmacology (Berl) 1988;94(1):84–91. doi: 10.1007/BF00735886. [DOI] [PubMed] [Google Scholar]
  8. Cervo L., Samanin R. Potential antidepressant properties of 8-hydroxy-2-(di-n-propylamino)tetralin, a selective serotonin1A receptor agonist. Eur J Pharmacol. 1987 Dec 1;144(2):223–229. doi: 10.1016/0014-2999(87)90523-1. [DOI] [PubMed] [Google Scholar]
  9. Chaput Y., Araneda R. C., Andrade R. Pharmacological and functional analysis of a novel serotonin receptor in the rat hippocampus. Eur J Pharmacol. 1990 Jul 17;182(3):441–456. doi: 10.1016/0014-2999(90)90041-4. [DOI] [PubMed] [Google Scholar]
  10. Colino A., Halliwell J. V. Differential modulation of three separate K-conductances in hippocampal CA1 neurons by serotonin. Nature. 1987 Jul 2;328(6125):73–77. doi: 10.1038/328073a0. [DOI] [PubMed] [Google Scholar]
  11. De Vivo M., Maayani S. Characterization of the 5-hydroxytryptamine1a receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in guinea pig and rat hippocampal membranes. J Pharmacol Exp Ther. 1986 Jul;238(1):248–253. [PubMed] [Google Scholar]
  12. Dourish C. T., Hutson P. H., Curzon G. Low doses of the putative serotonin agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) elicit feeding in the rat. Psychopharmacology (Berl) 1985;86(1-2):197–204. doi: 10.1007/BF00431709. [DOI] [PubMed] [Google Scholar]
  13. Engel J. A., Hjorth S., Svensson K., Carlsson A., Liljequist S. Anticonflict effect of the putative serotonin receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Eur J Pharmacol. 1984 Oct 15;105(3-4):365–368. doi: 10.1016/0014-2999(84)90634-4. [DOI] [PubMed] [Google Scholar]
  14. Evenden J. L., Angeby-Möller K. Effects of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) on locomotor activity and rearing of mice and rats. Psychopharmacology (Berl) 1990;102(4):485–491. doi: 10.1007/BF02247129. [DOI] [PubMed] [Google Scholar]
  15. Fibiger H. C., Lepiane F. G., Phillips A. G. Disruption of memory produced by stimulation of the dorsal raphe nucleus: mediation by serotonin. Brain Res. 1978 Oct 27;155(2):380–386. doi: 10.1016/0006-8993(78)91034-x. [DOI] [PubMed] [Google Scholar]
  16. Fozard J. R., Mir A. K., Middlemiss D. N. Cardiovascular response to 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) in the rat: site of action and pharmacological analysis. J Cardiovasc Pharmacol. 1987 Mar;9(3):328–347. doi: 10.1097/00005344-198703000-00010. [DOI] [PubMed] [Google Scholar]
  17. Goodwin G. M., De Souza R. J., Green A. R., Heal D. J. The pharmacology of the behavioural and hypothermic responses of rats to 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Psychopharmacology (Berl) 1987;91(4):506–511. doi: 10.1007/BF00216019. [DOI] [PubMed] [Google Scholar]
  18. Goodwin G. M., Green A. R. A behavioural and biochemical study in mice and rats of putative selective agonists and antagonists for 5-HT1 and 5-HT2 receptors. Br J Pharmacol. 1985 Mar;84(3):743–753. doi: 10.1111/j.1476-5381.1985.tb16157.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hagan J. J., Jansen J. H., Broekkamp C. L. Blockade of spatial learning by the M1 muscarinic antagonist pirenzepine. Psychopharmacology (Berl) 1987;93(4):470–476. doi: 10.1007/BF00207237. [DOI] [PubMed] [Google Scholar]
  20. Hensler J. G., Kovachich G. B., Frazer A. A quantitative autoradiographic study of serotonin1A receptor regulation. Effect of 5,7-dihydroxytryptamine and antidepressant treatments. Neuropsychopharmacology. 1991 Feb;4(2):131–144. [PubMed] [Google Scholar]
  21. Hoyer D. Functional correlates of serotonin 5-HT1 recognition sites. J Recept Res. 1988;8(1-4):59–81. doi: 10.3109/10799898809048978. [DOI] [PubMed] [Google Scholar]
  22. Morris R. G., Garrud P., Rawlins J. N., O'Keefe J. Place navigation impaired in rats with hippocampal lesions. Nature. 1982 Jun 24;297(5868):681–683. doi: 10.1038/297681a0. [DOI] [PubMed] [Google Scholar]
  23. Nelson D. L., Herbet A., Bourgoin S., Glowinski J., Hamon M. Characteristics of central 5-HT receptors and their adaptive changes following intracerebral 5,7-dihydroxytryptamine administration in the rat. Mol Pharmacol. 1978 Nov;14(6):983–995. [PubMed] [Google Scholar]
  24. Sharp T., Bramwell S. R., Hjorth S., Grahame-Smith D. G. Pharmacological characterization of 8-OH-DPAT-induced inhibition of rat hippocampal 5-HT release in vivo as measured by microdialysis. Br J Pharmacol. 1989 Nov;98(3):989–997. doi: 10.1111/j.1476-5381.1989.tb14630.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sprouse J. S., Aghajanian G. K. (-)-Propranolol blocks the inhibition of serotonergic dorsal raphe cell firing by 5-HT1A selective agonists. Eur J Pharmacol. 1986 Sep 9;128(3):295–298. doi: 10.1016/0014-2999(86)90782-x. [DOI] [PubMed] [Google Scholar]
  26. Sprouse J. S., Aghajanian G. K. Responses of hippocampal pyramidal cells to putative serotonin 5-HT1A and 5-HT1B agonists: a comparative study with dorsal raphe neurons. Neuropharmacology. 1988 Jul;27(7):707–715. doi: 10.1016/0028-3908(88)90079-2. [DOI] [PubMed] [Google Scholar]
  27. Vergé D., Daval G., Marcinkiewicz M., Patey A., el Mestikawy S., Gozlan H., Hamon M. Quantitative autoradiography of multiple 5-HT1 receptor subtypes in the brain of control or 5,7-dihydroxytryptamine-treated rats. J Neurosci. 1986 Dec;6(12):3474–3482. doi: 10.1523/JNEUROSCI.06-12-03474.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wetzel W., Getsova V. M., Jork R., Matthies H. Effect of serotonin on Y-maze retention and hippocampal protein synthesis in rats. Pharmacol Biochem Behav. 1980 Feb;12(2):319–322. doi: 10.1016/0091-3057(80)90378-0. [DOI] [PubMed] [Google Scholar]
  29. Winter J. C., Petti D. T. The effects of 8-hydroxy-2-(di-n-propylamino)tetralin and other serotonergic agonists on performance in a radial maze: a possible role for 5-HT1A receptors in memory. Pharmacol Biochem Behav. 1987 Aug;27(4):625–628. doi: 10.1016/0091-3057(87)90184-5. [DOI] [PubMed] [Google Scholar]
  30. Zemlan F. P., Kow L. M., Pfaff D. W. Spinal serotonin (5-HT) receptor subtypes and nociception. J Pharmacol Exp Ther. 1983 Aug;226(2):477–485. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES