Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1992 Mar;105(3):581–586. doi: 10.1111/j.1476-5381.1992.tb09022.x

Bovine polymorphonuclear leukocytes increase sensitivity to noradrenaline in isolated mesenteric arteries.

S J De Kimpe 1, D Van Heuven-Nolsen 1, F P Nijkamp 1
PMCID: PMC1908449  PMID: 1628145

Abstract

1. The effects of polymorphonuclear leukocytes (PMN) on vascular function to (-)-noradrenaline were examined in vitro. Purified bovine PMN were incubated in siliconized organ baths containing rings of bovine mesenteric arteries, after which a concentration-effect curve in response to (-)-noradrenaline was obtained. 2. PMN-derived products induced a long lasting concentration-dependent contraction of the blood vessels generating 24.4 +/- 6.8% of the maximal tension to (-)-noradrenaline at a cell concentration of 2.5 x 10(6) ml-1. The contractile response was also found in endothelium-denuded vascular rings. 3. PMN present in the organ bath caused an increase in the sensitivity of vascular rings to (-)-noradrenaline. At a cell number of 2.5 x 10(6) PMN ml-1 the pD2-value for (-)-noradrenaline was augmented 0.40 +/- 0.05 (P less than 0.001), while total contraction at the highest concentration (-)-noradrenaline was not affected. This increase in sensitivity was dependent on an intact endothelium. 4. The increase in sensitivity to (-)-noradrenaline by PMN was inhibited by superoxide dismutase, but not by catalase, dimethylthiourea, indomethacin or nordihydroguaiaretic acid. The non-stimulated bovine PMN produced oxygen radicals as measured by chemiluminescence. 5. Simultaneous incubation of PMN and (-)-noradrenaline with arterial rings induced an increase in the release of prostacyclin, measured by an elevated concentration of 6-keto-prostaglandin F1 alpha in the supernatant. 6. It is concluded that PMN can increase vascular tone directly or indirectly probably via the interaction of PMN-derived superoxide anions with endothelium-derived relaxing factor.

Full text

PDF
581

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARIENS E. J., VAN ROSSUM J. M. pDx, pAx and pDx values in the analysis of pharmacodynamics. Arch Int Pharmacodyn Ther. 1957 Apr 1;110(2-3):275–299. [PubMed] [Google Scholar]
  2. Brigham K. L., Meyrick B. Interactions of granulocytes with the lungs. Circ Res. 1984 Jun;54(6):623–635. doi: 10.1161/01.res.54.6.623. [DOI] [PubMed] [Google Scholar]
  3. Burke T. M., Wolin M. S. Hydrogen peroxide elicits pulmonary arterial relaxation and guanylate cyclase activation. Am J Physiol. 1987 Apr;252(4 Pt 2):H721–H732. doi: 10.1152/ajpheart.1987.252.4.H721. [DOI] [PubMed] [Google Scholar]
  4. Carden D. L., Smith J. K., Korthuis R. J. Neutrophil-mediated microvascular dysfunction in postischemic canine skeletal muscle. Role of granulocyte adherence. Circ Res. 1990 May;66(5):1436–1444. doi: 10.1161/01.res.66.5.1436. [DOI] [PubMed] [Google Scholar]
  5. Carpenter L. J., Johnson K. J., Kunkel R. G., Roth R. A. Phorbol myristate acetate produces injury to isolated rat lungs in the presence and absence of perfused neutrophils. Toxicol Appl Pharmacol. 1987 Oct;91(1):22–32. doi: 10.1016/0041-008x(87)90190-6. [DOI] [PubMed] [Google Scholar]
  6. Chobanian A. V., Prescott M. F., Haudenschild C. C. Recent advances in molecular pathology. The effects of hypertension on the arterial wall. Exp Mol Pathol. 1984 Aug;41(1):153–169. doi: 10.1016/0014-4800(84)90015-7. [DOI] [PubMed] [Google Scholar]
  7. Cocks T. M., Angus J. A. Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature. 1983 Oct 13;305(5935):627–630. doi: 10.1038/305627a0. [DOI] [PubMed] [Google Scholar]
  8. Feigen L. P. Differential effects of leukotrienes C4, D4 and E4 in the canine renal and mesenteric vascular beds. J Pharmacol Exp Ther. 1983 Jun;225(3):682–687. [PubMed] [Google Scholar]
  9. Gillespie M. N., Kojima S., Kunitomo M., Jay M. Coronary and myocardial effects of activated neutrophils in perfused rabbit hearts. J Pharmacol Exp Ther. 1986 Dec;239(3):836–840. [PubMed] [Google Scholar]
  10. Gryglewski R. J., Palmer R. M., Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature. 1986 Apr 3;320(6061):454–456. doi: 10.1038/320454a0. [DOI] [PubMed] [Google Scholar]
  11. Harlan J. M., Callahan K. S. Role of hydrogen peroxide in the neutrophil-mediated release of prostacyclin from cultured endothelial cells. J Clin Invest. 1984 Aug;74(2):442–448. doi: 10.1172/JCI111440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Henricks P. A., Binkhorst G. J., Nijkamp F. P. Stress diminishes infiltration and oxygen metabolism of phagocytic cells in calves. Inflammation. 1987 Dec;11(4):427–437. doi: 10.1007/BF00915986. [DOI] [PubMed] [Google Scholar]
  13. Houston D. S., Shepherd J. T., Vanhoutte P. M. Aggregating human platelets cause direct contraction and endothelium-dependent relaxation of isolated canine coronary arteries. Role of serotonin, thromboxane A2, and adenine nucleotides. J Clin Invest. 1986 Aug;78(2):539–544. doi: 10.1172/JCI112606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Katusic Z. S., Vanhoutte P. M. Superoxide anion is an endothelium-derived contracting factor. Am J Physiol. 1989 Jul;257(1 Pt 2):H33–H37. doi: 10.1152/ajpheart.1989.257.1.H33. [DOI] [PubMed] [Google Scholar]
  15. Mehta J. L., Lawson D. L., Nichols W. W., Mehta P. Modulation of vascular tone by neutrophils: dependence on endothelial integrity. Am J Physiol. 1989 Oct;257(4 Pt 2):H1315–H1320. doi: 10.1152/ajpheart.1989.257.4.H1315. [DOI] [PubMed] [Google Scholar]
  16. Michel M. C., Brodde O. E., Insel P. A. Peripheral adrenergic receptors in hypertension. Hypertension. 1990 Aug;16(2):107–120. doi: 10.1161/01.hyp.16.2.107. [DOI] [PubMed] [Google Scholar]
  17. Nishida M., Kuzuya T., Hoshida S., Kim Y., Kitabatake A., Kamada T., Tada M. Polymorphonuclear leukocytes induced vasoconstriction in isolated canine coronary arteries. Circ Res. 1990 Jan;66(1):253–258. doi: 10.1161/01.res.66.1.253. [DOI] [PubMed] [Google Scholar]
  18. Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
  19. Rimele T. J., Sturm R. J., Adams L. M., Henry D. E., Heaslip R. J., Weichman B. M., Grimes D. Interaction of neutrophils with vascular smooth muscle: identification of a neutrophil-derived relaxing factor. J Pharmacol Exp Ther. 1988 Apr;245(1):102–111. [PubMed] [Google Scholar]
  20. Rubanyi G. M., Vanhoutte P. M. Oxygen-derived free radicals, endothelium, and responsiveness of vascular smooth muscle. Am J Physiol. 1986 May;250(5 Pt 2):H815–H821. doi: 10.1152/ajpheart.1986.250.5.H815. [DOI] [PubMed] [Google Scholar]
  21. Schmid-Schönbein G. W., Engler R. L. Granulocytes as active participants in acute myocardial ischemia and infarction. Am J Cardiovasc Pathol. 1987 Jan;1(1):15–30. [PubMed] [Google Scholar]
  22. Sessa W. C., Mullane K. M. Release of a neutrophil-derived vasoconstrictor agent which augments platelet-induced contractions of blood vessels in vitro. Br J Pharmacol. 1990 Mar;99(3):553–559. doi: 10.1111/j.1476-5381.1990.tb12967.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sirén A. L., Feuerstein G. Effects of PAF and BN 52021 on cardiac function and regional blood flow in conscious rats. Am J Physiol. 1989 Jul;257(1 Pt 2):H25–H32. doi: 10.1152/ajpheart.1989.257.1.H25. [DOI] [PubMed] [Google Scholar]
  24. Vanhoutte P. M. Endothelium and control of vascular function. State of the Art lecture. Hypertension. 1989 Jun;13(6 Pt 2):658–667. doi: 10.1161/01.hyp.13.6.658. [DOI] [PubMed] [Google Scholar]
  25. Ward P. A., Varani J. Mechanisms of neutrophil-mediated killing of endothelial cells. J Leukoc Biol. 1990 Jul;48(1):97–102. doi: 10.1002/jlb.48.1.97. [DOI] [PubMed] [Google Scholar]
  26. Wintroub B. U., Klickstein L. B., Dzau V. J., Watt K. W. Granulocyte-angiotensin system. Identification of angiotensinogen as the plasma protein substrate of leukocyte cathepsin G. Biochemistry. 1984 Jan 17;23(2):227–232. doi: 10.1021/bi00297a009. [DOI] [PubMed] [Google Scholar]
  27. Wright C. D., Mülsch A., Busse R., Osswald H. Generation of nitric oxide by human neutrophils. Biochem Biophys Res Commun. 1989 Apr 28;160(2):813–819. doi: 10.1016/0006-291x(89)92506-0. [DOI] [PubMed] [Google Scholar]
  28. van Heuven-Nolsen D., Ten Have G. A., Nijkamp F. P. Neutrophils increase histamine contractions in pig coronary artery: a role for lipoxygenase products. Br J Clin Pharmacol. 1990;30 (Suppl 1):156S–158S. doi: 10.1111/j.1365-2125.1990.tb05492.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES