Abstract
1. The effect of ryanodine on catecholamine secretion induced by caffeine and muscarinic receptor activation was investigated in perfused adrenal glands of the guinea-pig. 2. Caffeine (40 mM) caused only a small increase in catecholamine secretion during perfusion with standard Locke solution. Caffeine-induced catecholamine secretion was markedly enhanced after removal of CaCl2 together with replacement of NaCl with sucrose. 3. In the absence of CaCl2 and NaCl, 50 microM ryanodine had no effect on the resting catecholamine secretion. Caffeine (40 mM) administered 15 min after treatment with ryanodine caused an increase in catecholamine secretion similar to that prior to application of ryanodine, but failed to have any effect thereafter. Combined application of ryanodine and caffeine also prevented catecholamine secretion induced by caffeine applied subsequently. 4. Catecholamine secretion induced by 100 microM acetylcholine (ACh) was only partially inhibited after treatment with ryanodine plus caffeine under Ca(2+)-free, Na(+)-deficient conditions. 5. Preferential influence of ryanodine on the response to caffeine was also confirmed in catecholamine secretion evoked by paired stimuli with caffeine and ACh alternately, during perfusion with either Ca(2+)-free Locke or sucrose-substituted solutions. 6. These results indicate that caffeine increases catecholamine secretion by mobilizing Ca2+ from intracellular Ca2+ stores through ryanodine-sensitive mechanisms in guinea-pig adrenal chromaffin cells. Ca2+ stores sensitive to caffeine and muscarinic receptor activation may not overlap entirely.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Endo M. Calcium release from the sarcoplasmic reticulum. Physiol Rev. 1977 Jan;57(1):71–108. doi: 10.1152/physrev.1977.57.1.71. [DOI] [PubMed] [Google Scholar]
- Fleischer S., Ogunbunmi E. M., Dixon M. C., Fleer E. A. Localization of Ca2+ release channels with ryanodine in junctional terminal cisternae of sarcoplasmic reticulum of fast skeletal muscle. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7256–7259. doi: 10.1073/pnas.82.21.7256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iino M. Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig taenia caeci. J Gen Physiol. 1990 Jun;95(6):1103–1122. doi: 10.1085/jgp.95.6.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iino M. Calcium-induced calcium release mechanism in guinea pig taenia caeci. J Gen Physiol. 1989 Aug;94(2):363–383. doi: 10.1085/jgp.94.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iino M., Kobayashi T., Endo M. Use of ryanodine for functional removal of the calcium store in smooth muscle cells of the guinea-pig. Biochem Biophys Res Commun. 1988 Apr 15;152(1):417–422. doi: 10.1016/s0006-291x(88)80730-7. [DOI] [PubMed] [Google Scholar]
- Ito S., Nakazato Y., Ohga A. The effect of veratridine on the release of catecholamines from the perfused adrenal gland. Br J Pharmacol. 1979 Feb;65(2):319–330. doi: 10.1111/j.1476-5381.1979.tb07833.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kanaide H., Shogakiuchi Y., Nakamura M. The norepinephrine-sensitive Ca2+-storage site differs from the caffeine-sensitive site in vascular smooth muscle of the rat aorta. FEBS Lett. 1987 Apr 6;214(1):130–134. doi: 10.1016/0014-5793(87)80027-3. [DOI] [PubMed] [Google Scholar]
- Kolb M. E., Horne M. L., Martz R. Dantrolene in human malignant hyperthermia. Anesthesiology. 1982 Apr;56(4):254–262. doi: 10.1097/00000542-198204000-00005. [DOI] [PubMed] [Google Scholar]
- Malgaroli A., Fesce R., Meldolesi J. Spontaneous [Ca2+]i fluctuations in rat chromaffin cells do not require inositol 1,4,5-trisphosphate elevations but are generated by a caffeine- and ryanodine-sensitive intracellular Ca2+ store. J Biol Chem. 1990 Feb 25;265(6):3005–3008. [PubMed] [Google Scholar]
- Matsumoto T., Kanaide H., Shogakiuchi Y., Nakamura M. Characteristics of the histamine-sensitive calcium store in vascular smooth muscle. Comparison with norepinephrine- or caffeine-sensitive stores. J Biol Chem. 1990 Apr 5;265(10):5610–5616. [PubMed] [Google Scholar]
- Nakazato Y., Ohga A., Oleshansky M., Tomita U., Yamada Y. Voltage-independent catecholamine release mediated by the activation of muscarinic receptors in guinea-pig adrenal glands. Br J Pharmacol. 1988 Jan;93(1):101–109. doi: 10.1111/j.1476-5381.1988.tb11410.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohta T., Ito S., Ohga A. Inhibitory action of dantrolene on Ca-induced Ca2+ release from sarcoplasmic reticulum in guinea pig skeletal muscle. Eur J Pharmacol. 1990 Mar 13;178(1):11–19. doi: 10.1016/0014-2999(90)94788-y. [DOI] [PubMed] [Google Scholar]
- Rousseau E., Smith J. S., Meissner G. Ryanodine modifies conductance and gating behavior of single Ca2+ release channel. Am J Physiol. 1987 Sep;253(3 Pt 1):C364–C368. doi: 10.1152/ajpcell.1987.253.3.C364. [DOI] [PubMed] [Google Scholar]
- Salzman S. K., Sellers M. S. Determination of norepinephrine in brain perfusates using high-performance liquid chromatography with electrochemical detection. J Chromatogr. 1982 Oct 8;232(1):29–37. doi: 10.1016/s0378-4347(00)86004-1. [DOI] [PubMed] [Google Scholar]
- Sumikawa K., Hayashi Y., Fukumitsu K., Yoshiya I. Selective inhibition by dantrolene of caffeine-induced catecholamine release from perfused dog adrenals. Res Commun Chem Pathol Pharmacol. 1987 Jul;57(1):45–53. [PubMed] [Google Scholar]
- Teraoka H., Nakazato Y., Ohga A. Ryanodine inhibits caffeine-evoked Ca2+ mobilization and catecholamine secretion from cultured bovine adrenal chromaffin cells. J Neurochem. 1991 Dec;57(6):1884–1890. doi: 10.1111/j.1471-4159.1991.tb06399.x. [DOI] [PubMed] [Google Scholar]
- Teraoka H., Nakazato Y., Ohga A. Sodium ions inhibit the stimulant action of caffeine on catecholamine secretion from adrenal chromaffin cells of the guinea pig. Neurosci Lett. 1990 Jan 1;108(1-2):179–182. doi: 10.1016/0304-3940(90)90727-q. [DOI] [PubMed] [Google Scholar]
- Thayer S. A., Perney T. M., Miller R. J. Regulation of calcium homeostasis in sensory neurons by bradykinin. J Neurosci. 1988 Nov;8(11):4089–4097. doi: 10.1523/JNEUROSCI.08-11-04089.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamada Y., Nakazato Y., Ohga A. Ouabain distinguishes between nicotinic and muscarinic receptor-mediated catecholamine secretions in perfused adrenal glands of cat. Br J Pharmacol. 1989 Feb;96(2):470–479. doi: 10.1111/j.1476-5381.1989.tb11840.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamada Y., Nakazato Y., Ohga A. The mode of action of caffeine on catecholamine release from perfused adrenal glands of cat. Br J Pharmacol. 1989 Oct;98(2):351–356. doi: 10.1111/j.1476-5381.1989.tb12603.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamada Y., Teraoka H., Nakazato Y., Ohga A. Intracellular Ca2+ antagonist TMB-8 blocks catecholamine secretion evoked by caffeine and acetylcholine from perfused cat adrenal glands in the absence of extracellular Ca2+. Neurosci Lett. 1988 Aug 1;90(3):338–342. doi: 10.1016/0304-3940(88)90212-1. [DOI] [PubMed] [Google Scholar]
