Abstract
1. 5-Hydroxytryptamine (5-HT) plays a role in the regulation of noradrenergic neurones in the brain, but the precise mechanism of regulation of noradrenaline (NA) release by 5-HT1A receptors has not been defined. The present study describes the effect of a highly potent and selective 5-HT1A receptor agonist, 5-(3-[[(2S)-1,4-benzodioxan-2-ylmethyl)]amino]propoxy)-1,3-b enzodioxole HC1 (MKC-242), on NA release in the hypothalamus using microdialysis in the freely moving rat. 2. Subcutaneous injection of MKC-242 (0.5 mg kg-1) increased extracellular levels of NA and its metabolite, 3-methoxy-4-hydroxyphenylglycol, in the hypothalamus and hippocampus. 3. The 5-HT1A receptor agonists, 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) (0.2 mg kg-1) and buspirone (3 mg kg-1) mimicked the effect of MKC-242 in increasing NA release in the hypothalamus. 4. The effects of MKC-242 and 8-OH-DPAT in the hypothalamus were antagonized by pretreatment with WAY100135 (10 mg kg-1), a silent 5-HT1A receptor antagonist. 5. Local administration of 8-OH-DPAT (10-100 microM), citalopram (1 microM), a 5-HT reuptake inhibitor, and MDL72222 (10 microM), a 5-HT3 receptor antagonist, into the hypothalamus, had no effect on NA release. 6. Intracerebroventricular injection with 5,7-dihydroxytryptamine caused a marked reduction in brain 5-HT content, but the treatment affected neither basal NA levels nor the MKC-242-induced increase in NA release. 7. The effect of MKC-242 in increasing NA release was not attenuated by repeated treatment with the drug (0.5 mg kg-1, once a day for 2 weeks).(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beer M., Kennett G. A., Curzon G. A single dose of 8-OH-DPAT reduces raphe binding of [3H]8-OH-DPAT and increases the effect of raphe stimulation on 5-HT metabolism. Eur J Pharmacol. 1990 Mar 20;178(2):179–187. doi: 10.1016/0014-2999(90)90473-j. [DOI] [PubMed] [Google Scholar]
- Bianchi G., Caccia S., Della Vedova F., Garattini S. The alpha 2-adrenoceptor antagonist activity of ipsapirone and gepirone is mediated by their common metabolite 1-(2-pyrimidinyl)-piperazine (PmP). Eur J Pharmacol. 1988 Jul 14;151(3):365–371. doi: 10.1016/0014-2999(88)90532-8. [DOI] [PubMed] [Google Scholar]
- Blandina P., Goldfarb J., Walcott J., Green J. P. Serotonergic modulation of the release of endogenous norepinephrine from rat hypothalamic slices. J Pharmacol Exp Ther. 1991 Jan;256(1):341–347. [PubMed] [Google Scholar]
- Blier P., de Montigny C. Modification of 5-HT neuron properties by sustained administration of the 5-HT1A agonist gepirone: electrophysiological studies in the rat brain. Synapse. 1987;1(5):470–480. doi: 10.1002/syn.890010511. [DOI] [PubMed] [Google Scholar]
- Broderick P. A., Piercey M. F. 5-HT1A agonists uncouple noradrenergic somatodendritic impulse flow and terminal release. Brain Res Bull. 1991 Nov;27(5):693–696. doi: 10.1016/0361-9230(91)90047-n. [DOI] [PubMed] [Google Scholar]
- Butler P. D., Pranzatelli M. R., Barkai A. I. Regional central serotonin-2 receptor binding and phosphoinositide turnover in rats with 5,7-dihydroxytryptamine lesions. Brain Res Bull. 1990 Jan;24(1):125–129. doi: 10.1016/0361-9230(90)90296-c. [DOI] [PubMed] [Google Scholar]
- Clement H. W., Gemsa D., Wesemann W. Serotonin-norepinephrine interactions: a voltammetric study on the effect of serotonin receptor stimulation followed in the N. raphe dorsalis and the Locus coeruleus of the rat. J Neural Transm Gen Sect. 1992;88(1):11–23. doi: 10.1007/BF01245033. [DOI] [PubMed] [Google Scholar]
- Crespi F., Buda M., McRae-Degueurce A., Pujol J. F. Alteration of tyrosine hydroxylase activity in the locus coeruleus after administration of p-chlorophenylalanine. Brain Res. 1980 Jun 9;191(2):501–509. doi: 10.1016/0006-8993(80)91298-6. [DOI] [PubMed] [Google Scholar]
- Crist J., Surprenant A. Evidence that 8-hydroxy-2-(n-dipropylamino)tetralin (8-OH-DPAT) is a selective alpha 2-adrenoceptor antagonist on guinea-pig submucous neurones. Br J Pharmacol. 1987 Oct;92(2):341–347. doi: 10.1111/j.1476-5381.1987.tb11329.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Done C. J., Sharp T. Biochemical evidence for the regulation of central noradrenergic activity by 5-HT1A and 5-HT2 receptors: microdialysis studies in the awake and anaesthetized rat. Neuropharmacology. 1994 Mar-Apr;33(3-4):411–421. doi: 10.1016/0028-3908(94)90071-x. [DOI] [PubMed] [Google Scholar]
- Done C. J., Sharp T. Evidence that 5-HT2 receptor activation decreases noradrenaline release in rat hippocampus in vivo. Br J Pharmacol. 1992 Sep;107(1):240–245. doi: 10.1111/j.1476-5381.1992.tb14493.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feuerstein T. J., Hertting G. Serotonin (5-HT) enhances hippocampal noradrenaline (NA) release: evidence for facilitatory 5-HT receptors within the CNS. Naunyn Schmiedebergs Arch Pharmacol. 1986 Jul;333(3):191–197. doi: 10.1007/BF00512929. [DOI] [PubMed] [Google Scholar]
- Fuller R. W., Perry K. W. Effects of buspirone and its metabolite, 1-(2-pyrimidinyl)piperazine, on brain monoamines and their metabolites in rats. J Pharmacol Exp Ther. 1989 Jan;248(1):50–56. [PubMed] [Google Scholar]
- Gartside S. E., Cowen P. J., Hjorth S. Effects of MDL 73005EF on central pre- and postsynaptic 5-HT1A receptor function in the rat in vivo. Eur J Pharmacol. 1990 Dec 4;191(3):391–400. doi: 10.1016/0014-2999(90)94173-u. [DOI] [PubMed] [Google Scholar]
- Gobbi M., Frittoli E., Mennini T. Antagonist properties of 1-(2-pyrimidinyl)piperazine at presynaptic alpha 2-adrenoceptors in the rat brain. Eur J Pharmacol. 1990 May 3;180(1):183–186. doi: 10.1016/0014-2999(90)90608-9. [DOI] [PubMed] [Google Scholar]
- Godbout R., Chaput Y., Blier P., de Montigny C. Tandospirone and its metabolite, 1-(2-pyrimidinyl)-piperazine--I. Effects of acute and long-term administration of tandospirone on serotonin neurotransmission. Neuropharmacology. 1991 Jul;30(7):679–690. doi: 10.1016/0028-3908(91)90175-b. [DOI] [PubMed] [Google Scholar]
- Gorea E., Adrien J. Serotonergic regulation of noradrenergic coerulean neurons: electrophysiological evidence for the involvement of 5-HT2 receptors. Eur J Pharmacol. 1988 Sep 23;154(3):285–291. doi: 10.1016/0014-2999(88)90203-8. [DOI] [PubMed] [Google Scholar]
- Gorea E., Davenne D., Lanfumey L., Chastanet M., Adrien J. Regulation of noradrenergic coerulean neuronal firing mediated by 5-HT2 receptors: involvement of the prepositus hypoglossal nucleus. Neuropharmacology. 1991 Dec;30(12A):1309–1318. doi: 10.1016/0028-3908(91)90028-a. [DOI] [PubMed] [Google Scholar]
- Greuel J. M., Glaser T. The putative 5-HT1A receptor antagonists NAN-190 and BMY 7378 are partial agonists in the rat dorsal raphe nucleus in vitro. Eur J Pharmacol. 1992 Feb 11;211(2):211–219. doi: 10.1016/0014-2999(92)90531-8. [DOI] [PubMed] [Google Scholar]
- Heal D. J., Hurst E. M., Prow M. R., Buckett W. R. An investigation of the role of 5-hydroxytryptamine in the attenuation of presynaptic alpha 2-adrenoceptor-mediated responses by antidepressant treatments. Psychopharmacology (Berl) 1990;101(1):100–106. doi: 10.1007/BF02253725. [DOI] [PubMed] [Google Scholar]
- Hjorth S., Auerbach S. B. Lack of 5-HT1A autoreceptor desensitization following chronic citalopram treatment, as determined by in vivo microdialysis. Neuropharmacology. 1994 Mar-Apr;33(3-4):331–334. doi: 10.1016/0028-3908(94)90062-0. [DOI] [PubMed] [Google Scholar]
- Hjorth S., Sharp T. Mixed agonist/antagonist properties of NAN-190 at 5-HT1A receptors: behavioural and in vivo brain microdialysis studies. Life Sci. 1990;46(13):955–963. doi: 10.1016/0024-3205(90)90097-b. [DOI] [PubMed] [Google Scholar]
- Kreiss D. S., Lucki I. Desensitization of 5-HT1A autoreceptors by chronic administration of 8-OH-DPAT. Neuropharmacology. 1992 Oct;31(10):1073–1076. doi: 10.1016/0028-3908(92)90110-b. [DOI] [PubMed] [Google Scholar]
- Larsson L. G., Rényi L., Ross S. B., Svensson B., Angeby-Möller K. Different effects on the responses of functional pre- and postsynaptic 5-HT1A receptors by repeated treatment of rats with the 5-HT1A receptor agonist 8-OH-DPAT. Neuropharmacology. 1990 Feb;29(2):85–91. doi: 10.1016/0028-3908(90)90047-u. [DOI] [PubMed] [Google Scholar]
- Matsuda T., Seong Y. H., Aono H., Kanda T., Baba A., Saito K., Tobe A., Iwata H. Agonist activity of a novel compound, 1-[3-(3,4-methylenedioxyphenoxy)propyl]-4-phenyl piperazine (BP-554), at central 5-HT1A receptors. Eur J Pharmacol. 1989 Oct 24;170(1-2):75–82. doi: 10.1016/0014-2999(89)90136-2. [DOI] [PubMed] [Google Scholar]
- Nakano Y., Matsuda T., Takuma K., Yoshikawa T., Baba A. Sex difference for tolerance of 5-HT1A receptor-mediated temperature and corticosterone responses in mice. Eur J Pharmacol. 1992 Aug 25;219(2):339–341. doi: 10.1016/0014-2999(92)90317-w. [DOI] [PubMed] [Google Scholar]
- Nash J. F., Jr, Meltzer H. Y., Gudelsky G. A. Selective cross-tolerance to 5-HT1A and 5-HT2 receptor-mediated temperature and corticosterone responses. Pharmacol Biochem Behav. 1989 Aug;33(4):781–785. doi: 10.1016/0091-3057(89)90470-x. [DOI] [PubMed] [Google Scholar]
- Pickel V. M., Joh T. H., Reis D. J. A serotonergic innervation of noradrenergic neurons in nucleus locus coeruleus: demonstration by immunocytochemical localization of the transmitter specific enzymes tyrosine and tryptophan hydroxylase. Brain Res. 1977 Aug 12;131(2):197–214. doi: 10.1016/0006-8993(77)90515-7. [DOI] [PubMed] [Google Scholar]
- Qadri F., Badoer E., Stadler T., Unger T. Angiotensin II-induced noradrenaline release from anterior hypothalamus in conscious rats: a brain microdialysis study. Brain Res. 1991 Nov 1;563(1-2):137–141. doi: 10.1016/0006-8993(91)91526-7. [DOI] [PubMed] [Google Scholar]
- Rasmussen K., Aghajanian G. K. Effect of hallucinogens on spontaneous and sensory-evoked locus coeruleus unit activity in the rat: reversal by selective 5-HT2 antagonists. Brain Res. 1986 Oct 22;385(2):395–400. doi: 10.1016/0006-8993(86)91090-5. [DOI] [PubMed] [Google Scholar]
- Reader T. A., Brière R., Grondin L., Ferron A. Effects of p-chlorophenylalanine on cortical monoamines and on the activity of noradrenergic neurons. Neurochem Res. 1986 Jul;11(7):1025–1035. doi: 10.1007/BF00965591. [DOI] [PubMed] [Google Scholar]
- Renaud B., Buda M., Lewis B. D., Pujol J. F. Effects of 5,6-dihydroxytryptamine on tyrosine-hydroxylase activity in central catecholaminergic neurons of the rat. Biochem Pharmacol. 1975 Sep 15;24(18):1739–1742. doi: 10.1016/0006-2952(75)90018-0. [DOI] [PubMed] [Google Scholar]
- Routledge C., Gurling J., Wright I. K., Dourish C. T. Neurochemical profile of the selective and silent 5-HT1A receptor antagonist WAY100135: an in vivo microdialysis study. Eur J Pharmacol. 1993 Aug 3;239(1-3):195–202. doi: 10.1016/0014-2999(93)90994-s. [DOI] [PubMed] [Google Scholar]
- Sharp T., McQuade R., Bramwell S., Hjorth S. Effect of acute and repeated administration of 5-HT1A receptor agonists on 5-HT release in rat brain in vivo. Naunyn Schmiedebergs Arch Pharmacol. 1993 Oct;348(4):339–346. doi: 10.1007/BF00171331. [DOI] [PubMed] [Google Scholar]
- Sprouse J. S. Inhibition of dorsal raphe cell firing by MDL 73005EF, a novel 5-HT1A receptor ligand. Eur J Pharmacol. 1991 Aug 29;201(2-3):163–169. doi: 10.1016/0014-2999(91)90340-v. [DOI] [PubMed] [Google Scholar]
- Steinbusch H. W. Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience. 1981;6(4):557–618. doi: 10.1016/0306-4522(81)90146-9. [DOI] [PubMed] [Google Scholar]
- Söderpalm B., Lundin B., Hjorth S. Sustained 5-hydroxytryptamine release-inhibitory and anxiolytic-like action of the partial 5-HT1A receptor agonist, buspirone, after prolonged chronic administration. Eur J Pharmacol. 1993 Aug 3;239(1-3):69–73. doi: 10.1016/0014-2999(93)90977-p. [DOI] [PubMed] [Google Scholar]
- Tian Y., Eaton M. J., Goudreau J. L., Lookingland K. J., Moore K. E. Neurochemical evidence that 5-hydroxytryptaminergic neurons tonically inhibit noradrenergic neurons terminating in the hypothalamus. Brain Res. 1993 Apr 2;607(1-2):215–221. doi: 10.1016/0006-8993(93)91509-q. [DOI] [PubMed] [Google Scholar]
