Abstract
Biological and genetic variability is a prominent feature of human immunodeficiency virus (HIV) strains, especially in tropism, syncytium formation, and replicative capacity. To determine whether there were variable host cell effects on HIV replication in monocytes, three different strains of low-passage-number monocytotropic blood isolates of HIV and the laboratory-adapted strain Ba-L were inoculated into panels of adherent monocytes drawn from 44 different donors, and peak extracellular HIV p24 antigen titers were compared. The clinical HIV strains showed patterns of either moderate or low-level replication in most donor monocytes (20 to 4,000 pg/ml). However, within this range there was marked variation in peak titers in most donors. HIV type 1 Ba-L replicated in all donor monocytes to much higher levels with less variability (30 to 40 ng/ml). Furthermore, replication of 21 clinical blood-derived strains of HIV in blood monocytes and monocyte-derived macrophages (MDM) from pairs of identical twins and age-matched unrelated donors (URD) of the same sex were compared. In all of the seven pairs of identical twins, the kinetics of replication (measured by extracellular HIV p24 antigen) of panels of four clinical HIV type 1 isolates in monocytes were similar within pairs. However, marked and significant differences in kinetics of HIV production occurred within 10 of the 12 unrelated donor pairs (P = 0.0007). The remaining two URD pairs showed similar kinetic patterns, but only one pair had the same HLA-DR genotype. Similar results were observed with monocytes/MDMs obtained from a second bleed of the same donor. Hence, discordant patterns of HIV replication kinetics between URD monocyte pairs contrasted with concordant patterns in identical twin monocytes. These data strongly suggest a host cell genetic effect on productive viral replication in monocytes and MDMs. So far, no consistent genetic linkage of HIV replication pattern with HLA-DR genotype has been observed.
Full Text
The Full Text of this article is available as a PDF (280.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bagasra O., Farzadegan H., Seshamma T., Oakes J. W., Saah A., Pomerantz R. J. Detection of HIV-1 proviral DNA in sperm from HIV-1-infected men. AIDS. 1994 Dec;8(12):1669–1674. doi: 10.1097/00002030-199412000-00005. [DOI] [PubMed] [Google Scholar]
- Balliet J. W., Kolson D. L., Eiger G., Kim F. M., McGann K. A., Srinivasan A., Collman R. Distinct effects in primary macrophages and lymphocytes of the human immunodeficiency virus type 1 accessory genes vpr, vpu, and nef: mutational analysis of a primary HIV-1 isolate. Virology. 1994 May 1;200(2):623–631. doi: 10.1006/viro.1994.1225. [DOI] [PubMed] [Google Scholar]
- Buchbinder S. P., Katz M. H., Hessol N. A., O'Malley P. M., Holmberg S. D. Long-term HIV-1 infection without immunologic progression. AIDS. 1994 Aug;8(8):1123–1128. doi: 10.1097/00002030-199408000-00014. [DOI] [PubMed] [Google Scholar]
- Cameron P. U., Mallal S. A., French M. A., Dawkins R. L. Major histocompatibility complex genes influence the outcome of HIV infection. Ancestral haplotypes with C4 null alleles explain diverse HLA associations. Hum Immunol. 1990 Dec;29(4):282–295. doi: 10.1016/0198-8859(90)90042-n. [DOI] [PubMed] [Google Scholar]
- Cao Y., Qin L., Zhang L., Safrit J., Ho D. D. Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection. N Engl J Med. 1995 Jan 26;332(4):201–208. doi: 10.1056/NEJM199501263320401. [DOI] [PubMed] [Google Scholar]
- Chang J., Li S., Naif H., Cunningham A. L. The magnitude of HIV replication in monocytes and macrophages is influenced by environmental conditions, viral strain, and host cells. J Leukoc Biol. 1994 Sep;56(3):230–235. doi: 10.1002/jlb.56.3.230. [DOI] [PubMed] [Google Scholar]
- Cheng-Mayer C., Quiroga M., Tung J. W., Dina D., Levy J. A. Viral determinants of human immunodeficiency virus type 1 T-cell or macrophage tropism, cytopathogenicity, and CD4 antigen modulation. J Virol. 1990 Sep;64(9):4390–4398. doi: 10.1128/jvi.64.9.4390-4398.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng-Mayer C., Weiss C., Seto D., Levy J. A. Isolates of human immunodeficiency virus type 1 from the brain may constitute a special group of the AIDS virus. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8575–8579. doi: 10.1073/pnas.86.21.8575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coombs R. W., Collier A. C., Allain J. P., Nikora B., Leuther M., Gjerset G. F., Corey L. Plasma viremia in human immunodeficiency virus infection. N Engl J Med. 1989 Dec 14;321(24):1626–1631. doi: 10.1056/NEJM198912143212402. [DOI] [PubMed] [Google Scholar]
- Dalgleish A. G., Wilson S., Gompels M., Ludlam C., Gazzard B., Coates A. M., Habeshaw J. T-cell receptor variable gene products and early HIV-1 infection. Lancet. 1992 Apr 4;339(8797):824–828. doi: 10.1016/0140-6736(92)90277-a. [DOI] [PubMed] [Google Scholar]
- Deacon N. J., Tsykin A., Solomon A., Smith K., Ludford-Menting M., Hooker D. J., McPhee D. A., Greenway A. L., Ellett A., Chatfield C. Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science. 1995 Nov 10;270(5238):988–991. doi: 10.1126/science.270.5238.988. [DOI] [PubMed] [Google Scholar]
- Evans L. A., McHugh T. M., Stites D. P., Levy J. A. Differential ability of human immunodeficiency virus isolates to productively infect human cells. J Immunol. 1987 May 15;138(10):3415–3418. [PubMed] [Google Scholar]
- Fabio G., Scorza R., Lazzarin A., Marchini M., Zarantonello M., D'Arminio A., Marchisio P., Plebani A., Luzzati R., Costigliola P. HLA-associated susceptibility to HIV-1 infection. Clin Exp Immunol. 1992 Jan;87(1):20–23. doi: 10.1111/j.1365-2249.1992.tb06407.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fitzgerald N. A., Shellam G. R. Host genetic influences on fetal susceptibility to murine cytomegalovirus after maternal or fetal infection. J Infect Dis. 1991 Feb;163(2):276–281. doi: 10.1093/infdis/163.2.276. [DOI] [PubMed] [Google Scholar]
- Fouchier R. A., Brouwer M., Kootstra N. A., Huisman H. G., Schuitemaker H. HIV-1 macrophage tropism is determined at multiple levels of the viral replication cycle. J Clin Invest. 1994 Nov;94(5):1806–1814. doi: 10.1172/JCI117529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harnett G. B., Shellam G. R. Variation in murine cytomegalovirus replication in fibroblasts from different mouse strains in vitro: correlation with in vivo resistance. J Gen Virol. 1982 Sep;62(Pt 1):39–47. doi: 10.1099/0022-1317-62-1-39. [DOI] [PubMed] [Google Scholar]
- Ho D. D., Moudgil T., Alam M. Quantitation of human immunodeficiency virus type 1 in the blood of infected persons. N Engl J Med. 1989 Dec 14;321(24):1621–1625. doi: 10.1056/NEJM198912143212401. [DOI] [PubMed] [Google Scholar]
- Kaslow R. A., Duquesnoy R., VanRaden M., Kingsley L., Marrari M., Friedman H., Su S., Saah A. J., Detels R., Phair J. A1, Cw7, B8, DR3 HLA antigen combination associated with rapid decline of T-helper lymphocytes in HIV-1 infection. A report from the Multicenter AIDS Cohort Study. Lancet. 1990 Apr 21;335(8695):927–930. doi: 10.1016/0140-6736(90)90995-h. [DOI] [PubMed] [Google Scholar]
- Kawamura M., Ishizaki T., Ishimoto A., Shioda T., Kitamura T., Adachi A. Growth ability of human immunodeficiency virus type 1 auxiliary gene mutants in primary blood macrophage cultures. J Gen Virol. 1994 Sep;75(Pt 9):2427–2431. doi: 10.1099/0022-1317-75-9-2427. [DOI] [PubMed] [Google Scholar]
- Kazazi F., Mathijs J. M., Chang J., Malafiej P., Lopez A., Dowton D., Sorrell T. C., Vadas M. A., Cunningham A. L. Recombinant interleukin 4 stimulates human immunodeficiency virus production by infected monocytes and macrophages. J Gen Virol. 1992 Apr;73(Pt 4):941–949. doi: 10.1099/0022-1317-73-4-941. [DOI] [PubMed] [Google Scholar]
- Kazazi F., Mathijs J. M., Foley P., Cunningham A. L. Variations in CD4 expression by human monocytes and macrophages and their relationships to infection with the human immunodeficiency virus. J Gen Virol. 1989 Oct;70(Pt 10):2661–2672. doi: 10.1099/0022-1317-70-10-2661. [DOI] [PubMed] [Google Scholar]
- Kesson A. M., Fear W. R., Kazazi F., Mathijs J. M., Chang J., King N. J., Cunningham A. L. Human immunodeficiency virus type 1 infection of human placental macrophages in vitro. J Infect Dis. 1993 Sep;168(3):571–579. doi: 10.1093/infdis/168.3.571. [DOI] [PubMed] [Google Scholar]
- Kim F. M., Kolson D. L., Balliet J. W., Srinivasan A., Collman R. G. V3-independent determinants of macrophage tropism in a primary human immunodeficiency virus type 1 isolate. J Virol. 1995 Mar;69(3):1755–1761. doi: 10.1128/jvi.69.3.1755-1761.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirchhoff F., Greenough T. C., Brettler D. B., Sullivan J. L., Desrosiers R. C. Brief report: absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N Engl J Med. 1995 Jan 26;332(4):228–232. doi: 10.1056/NEJM199501263320405. [DOI] [PubMed] [Google Scholar]
- Koenig S., Gendelman H. E., Orenstein J. M., Dal Canto M. C., Pezeshkpour G. H., Yungbluth M., Janotta F., Aksamit A., Martin M. A., Fauci A. S. Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science. 1986 Sep 5;233(4768):1089–1093. doi: 10.1126/science.3016903. [DOI] [PubMed] [Google Scholar]
- Koot M., Vos A. H., Keet R. P., de Goede R. E., Dercksen M. W., Terpstra F. G., Coutinho R. A., Miedema F., Tersmette M. HIV-1 biological phenotype in long-term infected individuals evaluated with an MT-2 cocultivation assay. AIDS. 1992 Jan;6(1):49–54. doi: 10.1097/00002030-199201000-00006. [DOI] [PubMed] [Google Scholar]
- Lebargy F., Branellec A., Deforges L., Bignon J., Bernaudin J. F. HIV-1 in human alveolar macrophages from infected patients is latent in vivo but replicates after in vitro stimulation. Am J Respir Cell Mol Biol. 1994 Jan;10(1):72–78. doi: 10.1165/ajrcmb.10.1.8292383. [DOI] [PubMed] [Google Scholar]
- Malykh A., Reitz M. S., Jr, Louie A., Hall L., Lori F. Multiple determinants for growth of human immunodeficiency virus type 1 in monocyte-macrophages. Virology. 1995 Jan 10;206(1):646–650. doi: 10.1016/s0042-6822(95)80082-4. [DOI] [PubMed] [Google Scholar]
- Mann D. L., Carrington M., O'Donnell M., Miller T., Goedert J. HLA phenotype is a factor in determining rate of disease progression and outcome in HIV-1-infected individuals. AIDS Res Hum Retroviruses. 1992 Aug;8(8):1345–1346. doi: 10.1089/aid.1992.8.1345. [DOI] [PubMed] [Google Scholar]
- Mellors J. W., Kingsley L. A., Rinaldo C. R., Jr, Todd J. A., Hoo B. S., Kokka R. P., Gupta P. Quantitation of HIV-1 RNA in plasma predicts outcome after seroconversion. Ann Intern Med. 1995 Apr 15;122(8):573–579. doi: 10.7326/0003-4819-122-8-199504150-00003. [DOI] [PubMed] [Google Scholar]
- Mikovits J. A., Lohrey N. C., Schulof R., Courtless J., Ruscetti F. W. Activation of infectious virus from latent human immunodeficiency virus infection of monocytes in vivo. J Clin Invest. 1992 Oct;90(4):1486–1491. doi: 10.1172/JCI116016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mori K., Ringler D. J., Desrosiers R. C. Restricted replication of simian immunodeficiency virus strain 239 in macrophages is determined by env but is not due to restricted entry. J Virol. 1993 May;67(5):2807–2814. doi: 10.1128/jvi.67.5.2807-2814.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Brien W. A., Koyanagi Y., Namazie A., Zhao J. Q., Diagne A., Idler K., Zack J. A., Chen I. S. HIV-1 tropism for mononuclear phagocytes can be determined by regions of gp120 outside the CD4-binding domain. Nature. 1990 Nov 1;348(6296):69–73. doi: 10.1038/348069a0. [DOI] [PubMed] [Google Scholar]
- Olerup O., Zetterquist H. HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens. 1992 May;39(5):225–235. doi: 10.1111/j.1399-0039.1992.tb01940.x. [DOI] [PubMed] [Google Scholar]
- Pantaleo G., Graziosi C., Fauci A. S. New concepts in the immunopathogenesis of human immunodeficiency virus infection. N Engl J Med. 1993 Feb 4;328(5):327–335. doi: 10.1056/NEJM199302043280508. [DOI] [PubMed] [Google Scholar]
- Pantaleo G., Menzo S., Vaccarezza M., Graziosi C., Cohen O. J., Demarest J. F., Montefiori D., Orenstein J. M., Fox C., Schrager L. K. Studies in subjects with long-term nonprogressive human immunodeficiency virus infection. N Engl J Med. 1995 Jan 26;332(4):209–216. doi: 10.1056/NEJM199501263320402. [DOI] [PubMed] [Google Scholar]
- Paxton W. A., Martin S. R., Tse D., O'Brien T. R., Skurnick J., VanDevanter N. L., Padian N., Braun J. F., Kotler D. P., Wolinsky S. M. Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual exposure. Nat Med. 1996 Apr;2(4):412–417. doi: 10.1038/nm0496-412. [DOI] [PubMed] [Google Scholar]
- Ratner L. Measurement of human immunodeficiency virus load and its relation to disease progression. AIDS Res Hum Retroviruses. 1989 Apr;5(2):115–119. doi: 10.1089/aid.1989.5.115. [DOI] [PubMed] [Google Scholar]
- Sangster M. Y., Heliams D. B., MacKenzie J. S., Shellam G. R. Genetic studies of flavivirus resistance in inbred strains derived from wild mice: evidence for a new resistance allele at the flavivirus resistance locus (Flv). J Virol. 1993 Jan;67(1):340–347. doi: 10.1128/jvi.67.1.340-347.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schnittman S. M., Psallidopoulos M. C., Lane H. C., Thompson L., Baseler M., Massari F., Fox C. H., Salzman N. P., Fauci A. S. The reservoir for HIV-1 in human peripheral blood is a T cell that maintains expression of CD4. Science. 1989 Jul 21;245(4915):305–308. doi: 10.1126/science.2665081. [DOI] [PubMed] [Google Scholar]
- Schuitemaker H., Koot M., Kootstra N. A., Dercksen M. W., de Goede R. E., van Steenwijk R. P., Lange J. M., Schattenkerk J. K., Miedema F., Tersmette M. Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus population. J Virol. 1992 Mar;66(3):1354–1360. doi: 10.1128/jvi.66.3.1354-1360.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schuitemaker H., Kootstra N. A., Koppelman M. H., Bruisten S. M., Huisman H. G., Tersmette M., Miedema F. Proliferation-dependent HIV-1 infection of monocytes occurs during differentiation into macrophages. J Clin Invest. 1992 Apr;89(4):1154–1160. doi: 10.1172/JCI115697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sierra-Madero J. G., Toossi Z., Hom D. L., Finegan C. K., Hoenig E., Rich E. A. Relationship between load of virus in alveolar macrophages from human immunodeficiency virus type 1-infected persons, production of cytokines, and clinical status. J Infect Dis. 1994 Jan;169(1):18–27. doi: 10.1093/infdis/169.1.18. [DOI] [PubMed] [Google Scholar]
- Simmons A. H-2-linked genes influence the severity of herpes simplex virus infection of the peripheral nervous system. J Exp Med. 1989 Apr 1;169(4):1503–1507. doi: 10.1084/jem.169.4.1503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sonza S., Maerz A., Uren S., Violo A., Hunter S., Boyle W., Crowe S. Susceptibility of human monocytes to HIV type 1 infection in vitro is not dependent on their level of CD4 expression. AIDS Res Hum Retroviruses. 1995 Jul;11(7):769–776. doi: 10.1089/aid.1995.11.769. [DOI] [PubMed] [Google Scholar]
- Spira A. I., Ho D. D. Effect of different donor cells on human immunodeficiency virus type 1 replication and selection in vitro. J Virol. 1995 Jan;69(1):422–429. doi: 10.1128/jvi.69.1.422-429.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steel C. M., Ludlam C. A., Beatson D., Peutherer J. F., Cuthbert R. J., Simmonds P., Morrison H., Jones M. HLA haplotype A1 B8 DR3 as a risk factor for HIV-related disease. Lancet. 1988 May 28;1(8596):1185–1188. doi: 10.1016/s0140-6736(88)92009-0. [DOI] [PubMed] [Google Scholar]
- Valentin A., Matsuda S., Asjo B. Characterization of the in vitro maturation of monocytes and the susceptibility to HIV infection. AIDS Res Hum Retroviruses. 1990 Aug;6(8):977–978. doi: 10.1089/aid.1990.6.977. [DOI] [PubMed] [Google Scholar]
- Valentin A., Von Gegerfelt A., Matsuda S., Nilsson K., Asjö B. In vitro maturation of mononuclear phagocytes and susceptibility to HIV-1 infection. J Acquir Immune Defic Syndr. 1991;4(8):751–759. [PubMed] [Google Scholar]
- Weinberg J. B., Matthews T. J., Cullen B. R., Malim M. H. Productive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes. J Exp Med. 1991 Dec 1;174(6):1477–1482. doi: 10.1084/jem.174.6.1477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiser B., Nachman S., Tropper P., Viscosi K. H., Grimson R., Baxter G., Fang G., Reyelt C., Hutcheon N., Burger H. Quantitation of human immunodeficiency virus type 1 during pregnancy: relationship of viral titer to mother-to-child transmission and stability of viral load. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8037–8041. doi: 10.1073/pnas.91.17.8037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams L. M., Cloyd M. W. Polymorphic human gene(s) determines differential susceptibility of CD4 lymphocytes to infection by certain HIV-1 isolates. Virology. 1991 Oct;184(2):723–728. doi: 10.1016/0042-6822(91)90442-e. [DOI] [PubMed] [Google Scholar]
- Wykes M. N., Shellam G. R., McCluskey J., Kast W. M., Dallas P. B., Price P. Murine cytomegalovirus interacts with major histocompatibility complex class I molecules to establish cellular infection. J Virol. 1993 Jul;67(7):4182–4189. doi: 10.1128/jvi.67.7.4182-4189.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamashita A., Yamamoto N., Matsuda J., Koyanagi Y. Cell type-specific heterogeneity of the HIV-1 V3 loop in infected individuals: selection of virus in macrophages and plasma. Virology. 1994 Oct;204(1):170–179. doi: 10.1006/viro.1994.1521. [DOI] [PubMed] [Google Scholar]
- Young K. K., Nelson R. P., Good R. A. Discordant human immunodeficiency virus infection in dizygotic twins detected by polymerase chain reaction. Pediatr Infect Dis J. 1990 Jun;9(6):454–456. [PubMed] [Google Scholar]