Abstract
1. The effects of nitric oxide-donating compounds and atrial natriuretic peptide on cyclic GMP accumulation and mechanical tone were compared with the effects of isoprenaline in bovine tracheal smooth muscle. 2. Sodium nitroprusside, glyceryl trinitrate, S-nitroso-N-acetylpenicillamine (SNAP), atrial natriuretic peptide and isoprenaline each caused concentration-dependent inhibitions of histamine-maintained tone (EC50 values 320 +/- 80, 150 +/- 45, 14,000 +/- 4,000, 2.8 +/- 0.8 and 6.6 +/- 4.3 nM respectively). 3. When compared with their effects on histamine-induced tone, sodium nitroprusside was equally potent and effective in causing relaxation of methacholine-supported tone (EC50 290 +/- 90 nM) while isoprenaline was as effective, but less potent (EC50 30 +/- 7 nM). SNAP was more potent and equi-effective as a relaxant of methacholine-supported tone (EC50 340 +/- 140 nM). At the maximum concentrations of glyceryl trinitrate and atrial natriuretic peptide tested against methacholine-supported tone, relaxations of 52% and 14% of the isoprenaline maximum were seen. 4. Sodium nitroprusside, glyceryl trinitrate and atrial natriuretic peptide each induced concentration-dependent increases in cyclic GMP accumulation. The time-courses of accumulation correlated closely with the relaxant actions of these compounds. 5. Pretreatment of tracheal smooth muscle with sodium nitroprusside or SNAP caused a rightward shift of the concentration-effect curve for histamine while reducing the maximum response. 6. LY 83583, a putative guanylyl cyclase inhibitor, caused a concentration-dependent reduction in basal cyclic GMP accumulation in tracheal smooth muscle and inhibited the effects of sodium nitroprusside on cyclic GMP accumulation. 7. LY 83583 also inhibited the relaxation of histamine-supported tone by glyceryl trinitrate, sodium nitroprusside, SNAP and atrial natriuretic peptide, and also sodium nitroprusside- and SNAP-induced relaxation of methacholine-supported tone. However, it had no significant effect on glyceryl trinitrate-induced relaxation of methacholine-supported tone. 8. It is concluded that the relaxant actions of sodium nitroprusside, glyceryl trinitrate, SNAP and atrial natriuretic peptide follow as a result of their ability to activate either soluble or particulate guanylyl cyclase leading to cyclic GMP accumulation. Although there does not seem to be any functional difference in the relaxant response to cyclic GMP generated by the particulate as opposed to soluble form(s) of guanylyl cyclase, atrial natriuretic peptide receptor/guanylyl cyclase activation was much less effective in causing relaxation of methacholine-supported tone when compared to activators of soluble guanylyl cyclase.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angus R. M., McCallum M. J., Hulks G., Thomson N. C. Bronchodilator, cardiovascular, and cyclic guanylyl monophosphate response to high-dose infused atrial natriuretic peptide in asthma. Am Rev Respir Dis. 1993 May;147(5):1122–1125. doi: 10.1164/ajrccm/147.5.1122. [DOI] [PubMed] [Google Scholar]
- Bates J. N., Baker M. T., Guerra R., Jr, Harrison D. G. Nitric oxide generation from nitroprusside by vascular tissue. Evidence that reduction of the nitroprusside anion and cyanide loss are required. Biochem Pharmacol. 1991 Dec 11;42 (Suppl):S157–S165. doi: 10.1016/0006-2952(91)90406-u. [DOI] [PubMed] [Google Scholar]
- Belvisi M. G., Stretton C. D., Yacoub M., Barnes P. J. Nitric oxide is the endogenous neurotransmitter of bronchodilator nerves in humans. Eur J Pharmacol. 1992 Jan 14;210(2):221–222. doi: 10.1016/0014-2999(92)90676-u. [DOI] [PubMed] [Google Scholar]
- Bolotina V. M., Najibi S., Palacino J. J., Pagano P. J., Cohen R. A. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature. 1994 Apr 28;368(6474):850–853. doi: 10.1038/368850a0. [DOI] [PubMed] [Google Scholar]
- Chilvers E. R., Giembycz M. A., Challiss R. A., Barnes B. J., Nahorski S. R. Lack of effect of zaprinast on methacholine-induced contraction and inositol 1,4,5-trisphosphate accumulation in bovine tracheal smooth muscle. Br J Pharmacol. 1991 May;103(1):1119–1125. doi: 10.1111/j.1476-5381.1991.tb12310.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chinkers M., Garbers D. L. Signal transduction by guanylyl cyclases. Annu Rev Biochem. 1991;60:553–575. doi: 10.1146/annurev.bi.60.070191.003005. [DOI] [PubMed] [Google Scholar]
- Chung S. J., Fung H. L. Identification of the subcellular site for nitroglycerin metabolism to nitric oxide in bovine coronary smooth muscle cells. J Pharmacol Exp Ther. 1990 May;253(2):614–619. [PubMed] [Google Scholar]
- Diamond J., Janis R. A. Increases in cyclic GMP levels may not mediate relaxant effects of sodium nitroprusside, verapamil and hydralazine in rat vas deferens. Nature. 1978 Feb 2;271(5644):472–473. doi: 10.1038/271472a0. [DOI] [PubMed] [Google Scholar]
- Diamond J. Lack of correlation between cyclic GMP elevation and relaxation of nonvascular smooth muscle by nitroglycerin, nitroprusside, hydroxylamine and sodium azide. J Pharmacol Exp Ther. 1983 May;225(2):422–426. [PubMed] [Google Scholar]
- Fedan J. S., Nutt M. E., Frazer D. G. Reactivity of guinea-pig isolated trachea to methacholine, histamine and isoproterenol applied serosally versus mucosally. Eur J Pharmacol. 1990 Nov 13;190(3):337–345. doi: 10.1016/0014-2999(90)94198-7. [DOI] [PubMed] [Google Scholar]
- Fiscus R. R., Torphy T. J., Mayer S. E. Cyclic GMP-dependent protein kinase activation in canine tracheal smooth muscle by methacholine and sodium nitroprusside. Biochim Biophys Acta. 1984 Dec 11;805(4):382–392. doi: 10.1016/0167-4889(84)90022-3. [DOI] [PubMed] [Google Scholar]
- Francis S. H., Noblett B. D., Todd B. W., Wells J. N., Corbin J. D. Relaxation of vascular and tracheal smooth muscle by cyclic nucleotide analogs that preferentially activate purified cGMP-dependent protein kinase. Mol Pharmacol. 1988 Oct;34(4):506–517. [PubMed] [Google Scholar]
- Furchgott R. F., Jothianandan D. Endothelium-dependent and -independent vasodilation involving cyclic GMP: relaxation induced by nitric oxide, carbon monoxide and light. Blood Vessels. 1991;28(1-3):52–61. doi: 10.1159/000158843. [DOI] [PubMed] [Google Scholar]
- Giembycz M. A., Raeburn D. Putative substrates for cyclic nucleotide-dependent protein kinases and the control of airway smooth muscle tone. J Auton Pharmacol. 1991 Dec;11(6):365–398. doi: 10.1111/j.1474-8673.1991.tb00260.x. [DOI] [PubMed] [Google Scholar]
- Gruetter C. A., Barry B. K., McNamara D. B., Gruetter D. Y., Kadowitz P. J., Ignarro L. Relaxation of bovine coronary artery and activation of coronary arterial guanylate cyclase by nitric oxide, nitroprusside and a carcinogenic nitrosoamine. J Cyclic Nucleotide Res. 1979;5(3):211–224. [PubMed] [Google Scholar]
- Harrison D. G., Bates J. N. The nitrovasodilators. New ideas about old drugs. Circulation. 1993 May;87(5):1461–1467. doi: 10.1161/01.cir.87.5.1461. [DOI] [PubMed] [Google Scholar]
- Hsu K. S., Fu W. M., Lin-Shiau S. Y. Blockade by 2,2',2''-tripyridine of the nicotinic acetylcholine receptor channels in embryonic Xenopus muscle cells. Br J Pharmacol. 1993 Sep;110(1):163–168. doi: 10.1111/j.1476-5381.1993.tb13787.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hulks G., Jardine A. G., Connell J. M., Thomson N. C. Effect of atrial natriuretic factor on bronchomotor tone in the normal human airway. Clin Sci (Lond) 1990 Jul;79(1):51–55. doi: 10.1042/cs0790051. [DOI] [PubMed] [Google Scholar]
- Hulks G., Jardine A., Connell J. M., Thomson N. C. Bronchodilator effect of atrial natriuretic peptide in asthma. BMJ. 1989 Oct 28;299(6707):1081–1082. doi: 10.1136/bmj.299.6707.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishii K., Murad F. ANP relaxes bovine tracheal smooth muscle and increases cGMP. Am J Physiol. 1989 Mar;256(3 Pt 1):C495–C500. doi: 10.1152/ajpcell.1989.256.3.C495. [DOI] [PubMed] [Google Scholar]
- Jansen A., Drazen J., Osborne J. A., Brown R., Loscalzo J., Stamler J. S. The relaxant properties in guinea pig airways of S-nitrosothiols. J Pharmacol Exp Ther. 1992 Apr;261(1):154–160. [PubMed] [Google Scholar]
- Kannan M. S., Johnson D. E. Nitric oxide mediates the neural nonadrenergic, noncholinergic relaxation of pig tracheal smooth muscle. Am J Physiol. 1992 Apr;262(4 Pt 1):L511–L514. doi: 10.1152/ajplung.1992.262.4.L511. [DOI] [PubMed] [Google Scholar]
- Karaki H., Murakami K., Nakagawa H., Urakawa N. Nitroglycerine-induced biphasic relaxation in vascular smooth muscle of rat aorta. Br J Pharmacol. 1984 Feb;81(2):387–392. doi: 10.1111/j.1476-5381.1984.tb10090.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katsuki S., Murad F. Regulation of adenosine cyclic 3',5'-monophosphate and guanosine cyclic 3',5'-monophosphate levels and contractility in bovine tracheal smooth muscle. Mol Pharmacol. 1977 Mar;13(2):330–341. [PubMed] [Google Scholar]
- Kowaluk E. A., Seth P., Fung H. L. Metabolic activation of sodium nitroprusside to nitric oxide in vascular smooth muscle. J Pharmacol Exp Ther. 1992 Sep;262(3):916–922. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Li C. G., Rand M. J. Evidence that part of the NANC relaxant response of guinea-pig trachea to electrical field stimulation is mediated by nitric oxide. Br J Pharmacol. 1991 Jan;102(1):91–94. doi: 10.1111/j.1476-5381.1991.tb12137.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malta E. Biphasic relaxant curves to glyceryl trinitrate in rat aortic rings. Evidence for two mechanisms of action. Naunyn Schmiedebergs Arch Pharmacol. 1989 Jan-Feb;339(1-2):236–243. doi: 10.1007/BF00165149. [DOI] [PubMed] [Google Scholar]
- Mülsch A., Busse R., Liebau S., Förstermann U. LY 83583 interferes with the release of endothelium-derived relaxing factor and inhibits soluble guanylate cyclase. J Pharmacol Exp Ther. 1988 Oct;247(1):283–288. [PubMed] [Google Scholar]
- O'Donnell M. E., Owen N. E. Role of cyclic GMP in atrial natriuretic factor stimulation of Na+,K+,Cl- cotransport in vascular smooth muscle cells. J Biol Chem. 1986 Nov 25;261(33):15461–15466. [PubMed] [Google Scholar]
- O'Donnell M., Garippa R., Welton A. F. Relaxant activity of atriopeptins in isolated guinea pig airway and vascular smooth muscle. Peptides. 1985 Jul-Aug;6(4):597–601. doi: 10.1016/0196-9781(85)90159-7. [DOI] [PubMed] [Google Scholar]
- Seth P., Fung H. L. Biochemical characterization of a membrane-bound enzyme responsible for generating nitric oxide from nitroglycerin in vascular smooth muscle cells. Biochem Pharmacol. 1993 Oct 19;46(8):1481–1486. doi: 10.1016/0006-2952(93)90115-d. [DOI] [PubMed] [Google Scholar]
- Tobin A. B., Lambert D. G., Nahorski S. R. Rapid desensitization of muscarinic m3 receptor-stimulated polyphosphoinositide responses. Mol Pharmacol. 1992 Dec;42(6):1042–1048. [PubMed] [Google Scholar]
- Torphy T. J., Freese W. B., Rinard G. A., Brunton L. L., Mayer S. E. Cyclic nucleotide-dependent protein kinases in airway smooth muscle. J Biol Chem. 1982 Oct 10;257(19):11609–11616. [PubMed] [Google Scholar]
- Torphy T. J., Zheng C., Peterson S. M., Fiscus R. R., Rinard G. A., Mayer S. E. Inhibitory effect of methacholine on drug-induced relaxation, cyclic AMP accumulation, and cyclic AMP-dependent protein kinase activation in canine tracheal smooth muscle. J Pharmacol Exp Ther. 1985 May;233(2):409–417. [PubMed] [Google Scholar]
- Waldman S. A., Murad F. Cyclic GMP synthesis and function. Pharmacol Rev. 1987 Sep;39(3):163–196. [PubMed] [Google Scholar]
- Wong S. K., Buckner C. K. Studies on beta-adrenoceptors mediating changes in mechanical events and adenosine 3',5'-monophosphate levels. Guinea-pig trachea. Eur J Pharmacol. 1978 Feb 1;47(3):273–280. doi: 10.1016/0014-2999(78)90234-0. [DOI] [PubMed] [Google Scholar]
- Zhou H. L., Torphy T. J. Relationship between cyclic guanosine monophosphate accumulation and relaxation of canine trachealis induced by nitrovasodilators. J Pharmacol Exp Ther. 1991 Sep;258(3):972–978. [PubMed] [Google Scholar]
