Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Oct;104(2):471–477. doi: 10.1111/j.1476-5381.1991.tb12453.x

The presence of five cyclic nucleotide phosphodiesterase isoenzyme activities in bovine tracheal smooth muscle and the functional effects of selective inhibitors.

M Shahid 1, R G van Amsterdam 1, J de Boer 1, R E ten Berge 1, C D Nicholson 1, J Zaagsma 1
PMCID: PMC1908540  PMID: 1665737

Abstract

1. The profile of cyclic nucleotide phosphodiesterase (PDE) isoenzymes and the relaxant effects of isoenzyme selective inhibitors were examined in bovine tracheal smooth muscle. The compounds examined were the non-selective inhibitor 3-isobutyl-1-methylxanthine (IBMX), zaprinast (PDE V selective), milrinone and Org 9935 (4,5-dihydro-6-(5,6-dimethoxy-benzo[b]thien-2-yl)-5-methyl-1 (2H)-pyridazinone; both PDE III selective), rolipram (PDE IV selective) and Org 30029 (N-hydroxy-5,6-dimethoxy-benzo[b]-thiophene-2-carboximidamide HCl a dual PDE III/IV inhibitor). 2. Ion exchange chromatography showed three main peaks of PDE activity. The first peak was stimulated by Ca2+/calmodulin (PDE I), the adenosine 3':5'-cyclic monophosphate (cyclic AMP) hydrolytic activity of the second peak was stimulated by guanosine 3':5'-cyclic monophosphate (cyclic GMP) (PDE II) whilst that of the third peak was not significantly modified by any regulator (PDE IV). Calmodulin affinity chromatography revealed the additional presence of cyclic GMP-specific PDE (PDE V) in the first peak. A clearly distinct peak of cyclic GMP-inhibited PDE (PDE III) was not observed. However, Org 9935 inhibited the third activity peak more effectively in the presence, than in the absence, of rolipram (3 mumol l-1), indicating the presence of PDE III activity. 3. Rolipram was the most potent inhibitor of PDE IV. The mean -log50 IC50 values for rolipram, IBMX, milrinone, Org 30029, Org 9935 and zaprinast were 5.9 +/- 0.1, 4.9 +/- 0.1, 4.7 +/- 0.1, 4.6 +/- 0.1 and 4.6 +/- 0.1, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
471

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arimura H., Ikemoto Y. Action of enflurane on cholinergic transmission in identified Aplysia neurones. Br J Pharmacol. 1986 Nov;89(3):573–582. doi: 10.1111/j.1476-5381.1986.tb11158.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beavo J. A. Multiple isozymes of cyclic nucleotide phosphodiesterase. Adv Second Messenger Phosphoprotein Res. 1988;22:1–38. [PubMed] [Google Scholar]
  3. Beavo J. A., Reifsnyder D. H. Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol Sci. 1990 Apr;11(4):150–155. doi: 10.1016/0165-6147(90)90066-H. [DOI] [PubMed] [Google Scholar]
  4. Bristol J. A., Sircar I., Moos W. H., Evans D. B., Weishaar R. E. Cardiotonic agents. 1. 4,5-Dihydro-6-[4-(1H-imidazol-1-yl)phenyl]-3 (2H)-pyridazinones: novel positive inotropic agents for the treatment of congestive heart failure. J Med Chem. 1984 Sep;27(9):1099–1101. doi: 10.1021/jm00375a001. [DOI] [PubMed] [Google Scholar]
  5. Davis C. W. Assessment of selective inhibition of rat cerebral cortical calcium-independent and calcium-dependent phosphodiesterases in crude extracts using deoxycyclic AMP and potassium ions. Biochim Biophys Acta. 1984 Mar 1;797(3):354–362. doi: 10.1016/0304-4165(84)90257-5. [DOI] [PubMed] [Google Scholar]
  6. Elliott K. R., Berry J. L., Bate A. J., Foster R. W., Small R. C. The isoenzyme selectivity of AH 21-132 as an inhibitor of cyclic nucleotide phosphodiesterase activity. J Enzyme Inhib. 1991;4(3):245–251. doi: 10.3109/14756369109035848. [DOI] [PubMed] [Google Scholar]
  7. Fredholm B. B., Brodin K., Strandberg K. On the mechanism of relaxation of tracheal muscle by theophylline and other cyclic nucleotide phosphodiesterase inhibitors. Acta Pharmacol Toxicol (Copenh) 1979 Nov;45(5):336–344. doi: 10.1111/j.1600-0773.1979.tb02402.x. [DOI] [PubMed] [Google Scholar]
  8. Hall I. P., Donaldson J., Hill S. J. Inhibition of histamine-stimulated inositol phospholipid hydrolysis by agents which increase cyclic AMP levels in bovine tracheal smooth muscle. Br J Pharmacol. 1989 Jun;97(2):603–613. doi: 10.1111/j.1476-5381.1989.tb11992.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hall I. P., Donaldson J., Hill S. J. Modulation of carbachol-induced inositol phosphate formation in bovine tracheal smooth muscle by cyclic AMP phosphodiesterase inhibitors. Biochem Pharmacol. 1990 Apr 15;39(8):1357–1363. doi: 10.1016/0006-2952(90)90013-b. [DOI] [PubMed] [Google Scholar]
  10. Harris A. L., Connell M. J., Ferguson E. W., Wallace A. M., Gordon R. J., Pagani E. D., Silver P. J. Role of low Km cyclic AMP phosphodiesterase inhibition in tracheal relaxation and bronchodilation in the guinea pig. J Pharmacol Exp Ther. 1989 Oct;251(1):199–206. [PubMed] [Google Scholar]
  11. Heaslip R. J., Giesa F. R., Rimele T. J., Grimes D. Sensitivity of the PGF2 alpha-versus carbachol-contracted trachea to relaxation by salbutamol, forskolin and prenalterol. Eur J Pharmacol. 1986 Aug 22;128(1-2):73–79. doi: 10.1016/0014-2999(86)90559-5. [DOI] [PubMed] [Google Scholar]
  12. Hoey M., Houslay M. D. Identification and selective inhibition of four distinct soluble forms of cyclic nucleotide phosphodiesterase activity from kidney. Biochem Pharmacol. 1990 Jul 15;40(2):193–202. doi: 10.1016/0006-2952(90)90678-e. [DOI] [PubMed] [Google Scholar]
  13. Lavan B. E., Lakey T., Houslay M. D. Resolution of soluble cyclic nucleotide phosphodiesterase isoenzymes, from liver and hepatocytes, identifies a novel IBMX-insensitive form. Biochem Pharmacol. 1989 Nov 15;38(22):4123–4136. doi: 10.1016/0006-2952(89)90694-1. [DOI] [PubMed] [Google Scholar]
  14. Lohmann S. M., Miech R. P., Butcher F. R. Effects of isoproterenol, theophylline and carbachol on cyclic nucleotide levels and relaxation of bovine tracheal smooth muscle. Biochim Biophys Acta. 1977 Sep 29;499(2):238–250. doi: 10.1016/0304-4165(77)90006-x. [DOI] [PubMed] [Google Scholar]
  15. Miller D. J., Steele D. S. The 'calcium sensitising' effects of ORG30029 in saponin- or Triton-skinned rat cardiac muscle. Br J Pharmacol. 1990 Aug;100(4):843–849. doi: 10.1111/j.1476-5381.1990.tb14102.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nicholson C. D., Challiss R. A., Shahid M. Differential modulation of tissue function and therapeutic potential of selective inhibitors of cyclic nucleotide phosphodiesterase isoenzymes. Trends Pharmacol Sci. 1991 Jan;12(1):19–27. doi: 10.1016/0165-6147(91)90484-a. [DOI] [PubMed] [Google Scholar]
  17. Nicholson C. D., Jackman S. A., Wilke R. The ability of denbufylline to inhibit cyclic nucleotide phosphodiesterase and its affinity for adenosine receptors and the adenosine re-uptake site. Br J Pharmacol. 1989 Jul;97(3):889–897. doi: 10.1111/j.1476-5381.1989.tb12029.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Reeves M. L., Leigh B. K., England P. J. The identification of a new cyclic nucleotide phosphodiesterase activity in human and guinea-pig cardiac ventricle. Implications for the mechanism of action of selective phosphodiesterase inhibitors. Biochem J. 1987 Jan 15;241(2):535–541. doi: 10.1042/bj2410535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schneider H. H., Schmiechen R., Brezinski M., Seidler J. Stereospecific binding of the antidepressant rolipram to brain protein structures. Eur J Pharmacol. 1986 Aug 7;127(1-2):105–115. doi: 10.1016/0014-2999(86)90210-4. [DOI] [PubMed] [Google Scholar]
  20. Shahid M., Nicholson C. D. Comparison of cyclic nucleotide phosphodiesterase isoenzymes in rat and rabbit ventricular myocardium: positive inotropic and phosphodiesterase inhibitory effects of Org 30029, milrinone and rolipram. Naunyn Schmiedebergs Arch Pharmacol. 1990 Dec;342(6):698–705. doi: 10.1007/BF00175715. [DOI] [PubMed] [Google Scholar]
  21. Shahid M., Rodger I. W. Chronotropic and inotropic actions of amrinone, carbazeran and isobutylmethyl xanthine: role of phosphodiesterase inhibition. Br J Pharmacol. 1989 Sep;98(1):291–301. doi: 10.1111/j.1476-5381.1989.tb16894.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Strada S. J., Martin M. W., Thompson W. J. General properties of multiple molecular forms of cyclic nucleotide phosphodiesterase in the nervous system. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1984;16:13–29. [PubMed] [Google Scholar]
  23. Torphy T. J., Burman M., Huang L. B., Tucker S. S. Inhibition of the low km cyclic AMP phosphodiesterase in intact canine trachealis by SK&F 94836: mechanical and biochemical responses. J Pharmacol Exp Ther. 1988 Sep;246(3):843–850. [PubMed] [Google Scholar]
  24. Torphy T. J., Cieslinski L. B. Characterization and selective inhibition of cyclic nucleotide phosphodiesterase isozymes in canine tracheal smooth muscle. Mol Pharmacol. 1990 Feb;37(2):206–214. [PubMed] [Google Scholar]
  25. Weishaar R. E., Burrows S. D., Kobylarz D. C., Quade M. M., Evans D. B. Multiple molecular forms of cyclic nucleotide phosphodiesterase in cardiac and smooth muscle and in platelets. Isolation, characterization, and effects of various reference phosphodiesterase inhibitors and cardiotonic agents. Biochem Pharmacol. 1986 Mar 1;35(5):787–800. doi: 10.1016/0006-2952(86)90247-9. [DOI] [PubMed] [Google Scholar]
  26. Weishaar R. E., Kobylarz-Singer D. C., Steffen R. P., Kaplan H. R. Subclasses of cyclic AMP-specific phosphodiesterase in left ventricular muscle and their involvement in regulating myocardial contractility. Circ Res. 1987 Oct;61(4):539–547. doi: 10.1161/01.res.61.4.539. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES