Abstract
1. The long-term (30 days) effects of a single dose of brodifacoum (0.2 mg kg-1, orally) on blood clotting activity and on liver parameters of the vitamin K cycle were investigated in rats. Maximal effect on blood clotting activity was seen on day one. On day seven blood clotting activity had returned to normal. 2. Liver microsomal vitamin KO reductase activity was maximally suppressed (10% of control activity) on day one, steadily recovered to about 40% on day 15 to remain at that level. The same time course was seen for the number of microsomal warfarin binding sites. 3. The persistent inhibition of the vitamin K cycle was also verified in vivo; following vitamin K administration (10 mg kg-1, i.v.) on day 30, the brodifacoum-treated rats accumulated vitamin KO in the liver. 4. Although clotting factor synthesis was normal, brodifacoum-treated rats were highly sensitive to warfarin. 5. Brodifacoum rapidly accumulated in the liver until the saturation of the microsomal binding site. Brodifacoum binding to the target prevented its elimination from the liver; liver content on day 30 was not different from day 7. 6. The results show (1) an over capacity for the hepatocellular vitamin K cycle, (2) a dissociation of the vitamin K epoxidation and the vitamin K-dependent carboxylation, (3) the 'superwarfarin' rodenticides to be extremely persistent due to their binding to the target.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bachmann K. A., Sullivan T. J. Dispositional and pharmacodynamic characteristics of brodifacoum in warfarin-sensitive rats. Pharmacology. 1983;27(5):281–288. doi: 10.1159/000137881. [DOI] [PubMed] [Google Scholar]
- Bechtold H., Trenk D., Jähnchen E., Meinertz T. Plasma vitamin K1-2,3-epoxide as diagnostic aid to detect surreptitious ingestion of oral anticoagulant drug. Lancet. 1983 Mar 12;1(8324):596–597. doi: 10.1016/s0140-6736(83)92852-0. [DOI] [PubMed] [Google Scholar]
- Borowski M., Furie B. C., Furie B. Distribution of gamma-carboxyglutamic acid residues in partially carboxylated human prothrombins. J Biol Chem. 1986 Feb 5;261(4):1624–1628. [PubMed] [Google Scholar]
- Borowski M., Furie B. C., Goldsmith G. H., Furie B. Metal and phospholipid binding properties of partially carboxylated human prothrombin variants. J Biol Chem. 1985 Aug 5;260(16):9258–9264. [PubMed] [Google Scholar]
- Breckenridge A. M., Cholerton S., Hart J. A., Park B. K., Scott A. K. A study of the relationship between the pharmacokinetics and the pharmacodynamics of the 4-hydroxycoumarin anticoagulants warfarin, difenacoum and brodifacoum in the rabbit. Br J Pharmacol. 1985 Jan;84(1):81–91. [PMC free article] [PubMed] [Google Scholar]
- Choonara I. A., Malia R. G., Haynes B. P., Hay C. R., Cholerton S., Breckenridge A. M., Preston F. E., Park B. K. The relationship between inhibition of vitamin K1 2,3-epoxide reductase and reduction of clotting factor activity with warfarin. Br J Clin Pharmacol. 1988 Jan;25(1):1–7. doi: 10.1111/j.1365-2125.1988.tb03274.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choonara I. A., Scott A. K., Haynes B. P., Cholerton S., Breckenridge A. M., Park B. K. Vitamin K1 metabolism in relation to pharmacodynamic response in anticoagulated patients. Br J Clin Pharmacol. 1985 Dec;20(6):643–648. doi: 10.1111/j.1365-2125.1985.tb05123.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fasco M. J., Principe L. M., Walsh W. A., Friedman P. A. Warfarin inhibition of vitamin K 2,3-epoxide reductase in rat liver microsomes. Biochemistry. 1983 Nov 22;22(24):5655–5660. doi: 10.1021/bi00293a031. [DOI] [PubMed] [Google Scholar]
- Greavses J. H., Ayres P. Heritable resistance to warfarin in rats. Nature. 1967 Aug 19;215(5103):877–878. doi: 10.1038/215877a0. [DOI] [PubMed] [Google Scholar]
- Greeff M. C., Mashile O., MacDougall L. G. "Superwarfarin" (bromodialone) poisoning in two children resulting in prolonged anticoagulation. Lancet. 1987 Nov 28;2(8570):1269–1269. doi: 10.1016/s0140-6736(87)91876-9. [DOI] [PubMed] [Google Scholar]
- Grinnell B. W., Walls J. D., Marks C., Glasebrook A. L., Berg D. T., Yan S. B., Bang N. U. Gamma-carboxylated isoforms of recombinant human protein S with different biologic properties. Blood. 1990 Dec 15;76(12):2546–2554. [PubMed] [Google Scholar]
- Hildebrandt E. F., Suttie J. W. Mechanism of coumarin action: sensitivity of vitamin K metabolizing enzymes of normal and warfarin-resistant rat liver. Biochemistry. 1982 May 11;21(10):2406–2411. doi: 10.1021/bi00539a020. [DOI] [PubMed] [Google Scholar]
- Leck J. B., Park B. K. A comparative study of the effects of warfarin and brodifacoum on the relationship between vitamin K1 metabolism and clotting factor activity in warfarin-susceptible and warfarin-resistant rats. Biochem Pharmacol. 1981 Jan 15;30(2):123–128. doi: 10.1016/0006-2952(81)90182-9. [DOI] [PubMed] [Google Scholar]
- Lipsky J. J. Antibiotic-associated hypoprothrombinaemia. J Antimicrob Chemother. 1988 Mar;21(3):281–300. doi: 10.1093/jac/21.3.281. [DOI] [PubMed] [Google Scholar]
- Olson R. E. The function and metabolism of vitamin K. Annu Rev Nutr. 1984;4:281–337. doi: 10.1146/annurev.nu.04.070184.001433. [DOI] [PubMed] [Google Scholar]
- Park B. K., Choonara I. A., Haynes B. P., Breckenridge A. M., Malia R. G., Preston F. E. Abnormal vitamin K metabolism in the presence of normal clotting factor activity in factory workers exposed to 4-hydroxycoumarins. Br J Clin Pharmacol. 1986 Mar;21(3):289–293. doi: 10.1111/j.1365-2125.1986.tb05192.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suttie J. W. Recent advances in hepatic vitamin K metabolism and function. Hepatology. 1987 Mar-Apr;7(2):367–376. doi: 10.1002/hep.1840070226. [DOI] [PubMed] [Google Scholar]
- Thijssen H. H., Baars L. G. Hepatic uptake and storage of warfarin. The relation with the target enzyme vitamin K 2,3-epoxide reductase. J Pharmacol Exp Ther. 1987 Dec;243(3):1082–1088. [PubMed] [Google Scholar]
- Thijssen H. H., Baars L. G. Microsomal warfarin binding and vitamin K 2,3-epoxide reductase. Biochem Pharmacol. 1989 Apr 1;38(7):1115–1120. doi: 10.1016/0006-2952(89)90257-8. [DOI] [PubMed] [Google Scholar]
- Thijssen H. H., Baars L. G., Vervoort-Peters H. T. Vitamin K 2,3-epoxide reductase: the basis for stereoselectivity of 4-hydroxycoumarin anticoagulant activity. Br J Pharmacol. 1988 Nov;95(3):675–682. doi: 10.1111/j.1476-5381.1988.tb11692.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thijssen H. H. Warfarin resistance. Vitamin K epoxide reductase of Scottish resistance genes is not irreversibly blocked by warfarin. Biochem Pharmacol. 1987 Sep 1;36(17):2753–2757. doi: 10.1016/0006-2952(87)90260-7. [DOI] [PubMed] [Google Scholar]
- Weitzel J. N., Sadowski J. A., Furie B. C., Moroose R., Kim H., Mount M. E., Murphy M. J., Furie B. Surreptitious ingestion of a long-acting vitamin K antagonist/rodenticide, brodifacoum: clinical and metabolic studies of three cases. Blood. 1990 Dec 15;76(12):2555–2559. [PubMed] [Google Scholar]
- Zimmermann A., Matschiner J. T. Biochemical basis of hereditary resistance to warfarin in the rat. Biochem Pharmacol. 1974 Mar 15;23(6):1033–1040. doi: 10.1016/0006-2952(74)90002-1. [DOI] [PubMed] [Google Scholar]
