Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Oct;104(2):337–342. doi: 10.1111/j.1476-5381.1991.tb12432.x

Vasodilator response of coronary smooth muscle to the sympathetic co-transmitters noradrenaline and adenosine 5'-triphosphate.

L Corr 1, G Burnstock 1
PMCID: PMC1908566  PMID: 1686735

Abstract

1. Vasodilator and vasoconstrictor responses to noradrenaline (NA), adenosine and adenosine 5'-triphosphate (ATP) were examined in isolated ring segments of the left anterior descending coronary artery of the rabbit in the absence of endothelium. 2. NA caused dose-dependent relaxation of potassium-constricted vessels in the absence of beta-adrenoceptor blockade, with a pD2 of 5.96 +/- 0.21. This was inhibited by 1 microM propranolol. Constrictor responses of vessels at baseline tension were only seen at concentrations greater than 1 mM, and reached a maximum of 6% of the contraction to 30 mM KCl. 3. ATP caused relaxation of the potassium-constricted ring segments in a dose-dependent manner, although a transient constriction often preceded the relaxation. Adenosine was equipotent with ATP in producing relaxation; this was significantly inhibited by the P1-purinoceptor antagonist, 8-phenyltheophylline (8-PT). The responses to ATP were little affected by 8-PT, indicating that ATP was not acting through breakdown to adenosine. At basal tone, ATP produced transient vasoconstriction only at concentrations greater than 0.1 mM, reaching a maximum of 38% of the contraction of 30 mM KCl. 4. We conclude that in the rabbit coronary artery both NA and ATP produce vasodilatation by a direct action on the smooth muscle.

Full text

PDF
337

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson R., Holmberg S., Svedmyr N., Aberg G. Adrenergic -and -receptors in coronary vessels in man. An in vitro study. Acta Med Scand. 1972 Mar;191(3):241–244. [PubMed] [Google Scholar]
  2. Angus J. A., Cocks T. M. Role of endothelium in vascular responses to norepinephrine, serotonin and acetylcholine. Bibl Cardiol. 1984;(38):43–52. [PubMed] [Google Scholar]
  3. BULBRING E. Measurements of oxygen consumption in smooth muscle. J Physiol. 1953 Oct;122(1):111–134. doi: 10.1113/jphysiol.1953.sp004983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bevan J. A., Osher J. V. A direct method for recording tension changes in the wall of small blood vessels in vitro. Agents Actions. 1972;2(5):257–260. doi: 10.1007/BF02087051. [DOI] [PubMed] [Google Scholar]
  5. Burnstock G., Crowe R., Wong H. K. Comparative pharmacological and histochemical evidence for purinergic inhibitory innervation of the portal vein of the rabbit, but not guinea-pig. Br J Pharmacol. 1979 Mar;65(3):377–388. doi: 10.1111/j.1476-5381.1979.tb07841.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burnstock G. Mechanisms of interaction of peptide and nonpeptide vascular neurotransmitter systems. J Cardiovasc Pharmacol. 1987;10 (Suppl 12):S74–S81. [PubMed] [Google Scholar]
  7. Burnstock G. Sympathetic purinergic transmission in small blood vessels. Trends Pharmacol Sci. 1988 Apr;9(4):116–117. doi: 10.1016/0165-6147(88)90185-x. [DOI] [PubMed] [Google Scholar]
  8. Burnstock G., Warland J. J. A pharmacological study of the rabbit saphenous artery in vitro: a vessel with a large purinergic contractile response to sympathetic nerve stimulation. Br J Pharmacol. 1987 Jan;90(1):111–120. doi: 10.1111/j.1476-5381.1987.tb16830.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. De Mey J. G., Vanhoutte P. M. Role of the intima in cholinergic and purinergic relaxation of isolated canine femoral arteries. J Physiol. 1981 Jul;316:347–355. doi: 10.1113/jphysiol.1981.sp013792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Furchgott R. F. Role of endothelium in responses of vascular smooth muscle. Circ Res. 1983 Nov;53(5):557–573. doi: 10.1161/01.res.53.5.557. [DOI] [PubMed] [Google Scholar]
  11. Fyffe R. E., Perl E. R. Is ATP a central synaptic mediator for certain primary afferent fibers from mammalian skin? Proc Natl Acad Sci U S A. 1984 Nov;81(21):6890–6893. doi: 10.1073/pnas.81.21.6890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gräser T., Leisner H., Tiedt N. Absence of role of endothelium in the response of isolated porcine coronary arteries to acetylcholine. Cardiovasc Res. 1986 Apr;20(4):299–302. doi: 10.1093/cvr/20.4.299. [DOI] [PubMed] [Google Scholar]
  13. HOLTON F. A., HOLTON P. The possibility that ATP is a transmitter at sensory nerve endings. J Physiol. 1953 Mar;119(4):50P–51P. [PubMed] [Google Scholar]
  14. HOLTON P. The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J Physiol. 1959 Mar 12;145(3):494–504. doi: 10.1113/jphysiol.1959.sp006157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Han C., Abel P. W. Neuropeptide Y potentiates contraction and inhibits relaxation of rabbit coronary arteries. J Cardiovasc Pharmacol. 1987 Jun;9(6):675–681. doi: 10.1097/00005344-198706000-00006. [DOI] [PubMed] [Google Scholar]
  16. Head R. J., Stitzel R. E., de la Lande I. S., Johnson S. M. Effect of chronic denervation on the activities of monoamine oxidase and catechol-O-methyl transferase and on the contents of noradrenaline and adenosine triphosphate in the rabbit ear artery. Blood Vessels. 1977;14(4):229–239. doi: 10.1159/000158131. [DOI] [PubMed] [Google Scholar]
  17. Ishikawa S. Actions of ATP and alpha, beta-methylene ATP on neuromuscular transmission and smooth muscle membrane of the rabbit and guinea-pig mesenteric arteries. Br J Pharmacol. 1985 Dec;86(4):777–787. doi: 10.1111/j.1476-5381.1985.tb11099.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jahr C. E., Jessell T. M. ATP excites a subpopulation of rat dorsal horn neurones. Nature. 1983 Aug 25;304(5928):730–733. doi: 10.1038/304730a0. [DOI] [PubMed] [Google Scholar]
  19. Katsuragi T., Su C. Facilitation by clonidine of purine release induced by high KCl from the rabbit pulmonary artery. Br J Pharmacol. 1981 Nov;74(3):709–713. doi: 10.1111/j.1476-5381.1981.tb10482.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kennedy C., Burnstock G. ATP produces vasodilation via P1 purinoceptors and vasoconstriction via P2 purinoceptors in the isolated rabbit central ear artery. Blood Vessels. 1985;22(3):145–155. doi: 10.1159/000158592. [DOI] [PubMed] [Google Scholar]
  21. Kennedy C., Delbro D., Burnstock G. P2-purinoceptors mediate both vasodilation (via the endothelium) and vasoconstriction of the isolated rat femoral artery. Eur J Pharmacol. 1985 Jan 2;107(2):161–168. doi: 10.1016/0014-2999(85)90055-x. [DOI] [PubMed] [Google Scholar]
  22. Kennedy C., Saville V. L., Burnstock G. The contributions of noradrenaline and ATP to the responses of the rabbit central ear artery to sympathetic nerve stimulation depend on the parameters of stimulation. Eur J Pharmacol. 1986 Apr 2;122(3):291–300. doi: 10.1016/0014-2999(86)90409-7. [DOI] [PubMed] [Google Scholar]
  23. Levitt B., Westfall D. P. Factors influencing the release of purines and norepinephrine in the rabbit portal vein. Blood Vessels. 1982;19(1):30–40. doi: 10.1159/000158371. [DOI] [PubMed] [Google Scholar]
  24. Lioy F. An analysis of the mechanism of catecholamine effects on coronary circulation. Am J Physiol. 1967 Aug;213(2):487–491. doi: 10.1152/ajplegacy.1967.213.2.487. [DOI] [PubMed] [Google Scholar]
  25. Mark A. L., Abboud F. M., Schmid P. G., Heistad D. D., Mayer H. E. Differences in direct effects of adrenergic stimuli on coronary, cutaneous, and muscular vessels. J Clin Invest. 1972 Feb;51(2):279–287. doi: 10.1172/JCI106812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mathieson J. J., Burnstock G. Purine-mediated relaxation and constriction of isolated rabbit mesenteric artery are not endothelium-dependent. Eur J Pharmacol. 1985 Dec 3;118(3):221–229. doi: 10.1016/0014-2999(85)90132-3. [DOI] [PubMed] [Google Scholar]
  27. Miller R. C., Cornish E. J., Goldie R. G. Responses of sheep and kitten isolated coronary arteries to some vasoactive agents. Pharmacol Res Commun. 1984 Jul;16(7):667–677. doi: 10.1016/s0031-6989(84)80045-4. [DOI] [PubMed] [Google Scholar]
  28. Murad F., Arnold W. P., Mittal C. K., Braughler J. M. Properties and regulation of guanylate cyclase and some proposed functions for cyclic GMP. Adv Cyclic Nucleotide Res. 1979;11:175–204. [PubMed] [Google Scholar]
  29. Muramatsu I. Evidence for sympathetic, purinergic transmission in the mesenteric artery of the dog. Br J Pharmacol. 1986 Mar;87(3):478–480. doi: 10.1111/j.1476-5381.1986.tb10187.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Muramatsu I., Fujiwara M., Miura A., Sakakibara Y. Possible involvement of adenine nucleotides in sympathetic neuroeffector mechanisms of dog basilar artery. J Pharmacol Exp Ther. 1981 Feb;216(2):401–409. [PubMed] [Google Scholar]
  31. Muramatsu I., Kigoshi S. Purinergic and non-purinergic innervation in the cerebral arteries of the dog. Br J Pharmacol. 1987 Dec;92(4):901–908. doi: 10.1111/j.1476-5381.1987.tb11396.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ramme D., Regenold J. T., Starke K., Busse R., Illes P. Identification of the neuroeffector transmitter in jejunal branches of the rabbit mesenteric artery. Naunyn Schmiedebergs Arch Pharmacol. 1987 Sep;336(3):267–273. doi: 10.1007/BF00172677. [DOI] [PubMed] [Google Scholar]
  33. Reilly W. M., Saville V. L., Burnstock G. An assessment of the antagonistic activity of reactive blue 2 at P1- and P2-purinoceptors: supporting evidence for purinergic innervation of the rabbit portal vein. Eur J Pharmacol. 1987 Aug 4;140(1):47–53. doi: 10.1016/0014-2999(87)90632-7. [DOI] [PubMed] [Google Scholar]
  34. Salt T. E., Hill R. G. Excitation of single sensory neurones in the rat caudal trigeminal nucleus by iontophoretically applied adenosine 5'-triphosphate. Neurosci Lett. 1983 Jan 31;35(1):53–57. doi: 10.1016/0304-3940(83)90526-8. [DOI] [PubMed] [Google Scholar]
  35. Shirasaki Y., Su C., Lee T. J., Kolm P., Cline W. H., Jr, Nickols G. A. Endothelial modulation of vascular relaxation to nitrovasodilators in aging and hypertension. J Pharmacol Exp Ther. 1986 Dec;239(3):861–866. [PubMed] [Google Scholar]
  36. Sneddon P., Burnstock G. ATP as a co-transmitter in rat tail artery. Eur J Pharmacol. 1984 Oct 30;106(1):149–152. doi: 10.1016/0014-2999(84)90688-5. [DOI] [PubMed] [Google Scholar]
  37. Su C. Modes of vasoconstrictor and vasodilator neurotransmission. Blood Vessels. 1978;15(1-3):183–189. doi: 10.1159/000158164. [DOI] [PubMed] [Google Scholar]
  38. Su C. Neurogenic release of purine compounds in blood vessels. J Pharmacol Exp Ther. 1975 Oct;195(1):159–166. [PubMed] [Google Scholar]
  39. Vanhoutte P. M., Rimele T. J. Role of the endothelium in the control of vascular smooth muscle function. J Physiol (Paris) 1982;78(7):681–686. [PubMed] [Google Scholar]
  40. Vidal M., Hicks P. E., Langer S. Z. Differential effects of alpha-beta-methylene ATP on responses to nerve stimulation in SHR and WKY tail arteries. Naunyn Schmiedebergs Arch Pharmacol. 1986 Apr;332(4):384–390. doi: 10.1007/BF00500092. [DOI] [PubMed] [Google Scholar]
  41. YURCHAK P. M., ROLETT E. L., COHEN L. S., GORLIN R. EFFECTS OF NOREPINEPHRINE ON THE CORONARY CIRCULATION IN MAN. Circulation. 1964 Aug;30:180–187. doi: 10.1161/01.cir.30.2.180. [DOI] [PubMed] [Google Scholar]
  42. ZUBERBUHLER R. C., BOHR D. F. RESPONSES OF CORONARY SMOOTH MUSCLE TO CATECHOLAMINES. Circ Res. 1965 May;16:431–440. doi: 10.1161/01.res.16.5.431. [DOI] [PubMed] [Google Scholar]
  43. von Kügelgen I., Starke K. Noradrenaline and adenosine triphosphate as co-transmitters of neurogenic vasoconstriction in rabbit mesenteric artery. J Physiol. 1985 Oct;367:435–455. doi: 10.1113/jphysiol.1985.sp015834. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES